2017研究生數(shù)學(xué)建模優(yōu)秀論文(2)
2017研究生數(shù)學(xué)建模優(yōu)秀論文
2017研究生數(shù)學(xué)建模優(yōu)秀論文篇3
淺談中學(xué)數(shù)學(xué)建模
摘 要: 全面實施素質(zhì)教育已成為我國當(dāng)前的戰(zhàn)略性決策,中學(xué)數(shù)學(xué)建模作為素質(zhì)教育的一個重要組成部分,在培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力方面具有不可忽視的功能與作用。目前,中學(xué)數(shù)學(xué)建模教學(xué)沒有成熟的經(jīng)驗和方法可以借鑒,需要在教學(xué)實踐中進(jìn)一步探索。本文針對中學(xué)數(shù)學(xué)建模教學(xué)從理論上進(jìn)行了較為深入的分析,闡述了什么是數(shù)學(xué)模型和數(shù)學(xué)建模,提出了中學(xué)數(shù)學(xué)建模教學(xué)新的理念和教學(xué)方式。
關(guān)鍵詞: 中學(xué)數(shù)學(xué)模型 數(shù)學(xué)建模 建模教學(xué) 教學(xué)方式
1.引言
1999年第三次全國教育工作會議明確提出以培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力為重點的素質(zhì)教育。“發(fā)展學(xué)生的數(shù)感、符號感、空間觀念、統(tǒng)計觀念、推理能力、應(yīng)用意識”,是義務(wù)教育階段培養(yǎng)學(xué)生初步的創(chuàng)新精神和實踐能力的重要學(xué)習(xí)內(nèi)容。“發(fā)展應(yīng)用數(shù)學(xué)知識的意識與能力,倡導(dǎo)自主探索、動手實踐、合作交流、閱讀自學(xué)等學(xué)習(xí)數(shù)學(xué)的方式,培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力”,是高中數(shù)學(xué)課程標(biāo)準(zhǔn)的新觀念。高中數(shù)學(xué)新大綱強調(diào):要增強用數(shù)學(xué)的意識,學(xué)會分析問題和創(chuàng)造性的解決問題,使數(shù)學(xué)教學(xué)成為再創(chuàng)造、再發(fā)現(xiàn)的教學(xué)。在數(shù)學(xué)教育實踐中,一直存在著忽視應(yīng)用的傾向。數(shù)學(xué)“雙基”是我國數(shù)學(xué)教育的優(yōu)良傳統(tǒng),但過于強調(diào)“雙基”教學(xué),忽視數(shù)學(xué)的應(yīng)用和應(yīng)用能力的培養(yǎng),隨著社會的進(jìn)步和科學(xué)的發(fā)展,這種觀念和做法的弊端日益顯現(xiàn)出來。近年來,不論中考還是高考都加大了應(yīng)用題的力度,這些題目的解答不夠理想。大多數(shù)學(xué)生碰到陌生的題型或者聯(lián)系實際的問題不會用數(shù)學(xué)方法去解決。
數(shù)學(xué)教學(xué)不僅要讓學(xué)生獲得新的知識,而且要提高學(xué)生的思維能力,要培養(yǎng)學(xué)生自覺地應(yīng)用數(shù)學(xué)知識去考慮和處理日常生活、生產(chǎn)中所遇到的問題,從而形成良好的思維品質(zhì),造就一代具有探索新知識、新方法的創(chuàng)造性思維能力的新人。由此看來,加強中學(xué)數(shù)學(xué)建模教學(xué)顯得非常必要。
2.數(shù)學(xué)模型與數(shù)學(xué)建模
所謂數(shù)學(xué)模型,是指對于現(xiàn)實世界的某一特定研究對象,為了某個特定的目的,根據(jù)特有的內(nèi)在規(guī)律,在作了一些必要的簡化假設(shè)后,運用適當(dāng)?shù)臄?shù)學(xué)工具,并通過數(shù)學(xué)語言表述出來的一個數(shù)學(xué)結(jié)構(gòu)。數(shù)學(xué)中各種基本概念,各種數(shù)學(xué)公式、方程式、各類函數(shù)及相應(yīng)的運算系統(tǒng),都可稱為數(shù)學(xué)模型。數(shù)學(xué)建模就是提煉數(shù)學(xué)模型的過程,是對研究對象進(jìn)行具體分析,從而達(dá)到科學(xué)抽象的過程,意在尋求一個能反映問題本質(zhì)特征的、同時又是理想化、簡單化的數(shù)學(xué)模型。數(shù)學(xué)建模最重要的特點是要接受實踐的檢驗、多次修改模型漸趨完善的過程是一個化繁為簡、化難為易的過程。通過對問題數(shù)學(xué)化,模型構(gòu)建,求解檢驗使問題獲得解決的方法稱之為數(shù)學(xué)模型方法。數(shù)學(xué)模型方法幾乎貫穿于整個中學(xué)數(shù)學(xué)學(xué)習(xí)過程之中,中學(xué)數(shù)學(xué)中的列方程解應(yīng)用題,建立函數(shù)表達(dá)式及解析幾何里的軌跡方程等都孕育著數(shù)學(xué)模型方法的思想。
著名數(shù)學(xué)家懷特海曾說:“數(shù)學(xué)就是對于模式的研究。”數(shù)學(xué)是模型的科學(xué),建立數(shù)學(xué)理論就是創(chuàng)造模型,用數(shù)學(xué)理論解決實際問題就是應(yīng)用模型。數(shù)學(xué)說到底實際上就是教給學(xué)生前人給我們構(gòu)建的一個個數(shù)學(xué)模型和怎樣構(gòu)建模型的思想方法,以使學(xué)生能運用數(shù)學(xué)模型解決數(shù)學(xué)問題和實際問題。培養(yǎng)學(xué)生運用數(shù)學(xué)建模解決實際問題的能力,關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題。學(xué)生必須首先通過觀察、分析、提煉出實際問題的數(shù)學(xué)模型,然后把數(shù)學(xué)模型納入某知識系統(tǒng)去處理,而且要有相當(dāng)?shù)挠^察、分析、綜合和類比能力,從紛繁復(fù)雜的具體問題中抽象出熟悉的數(shù)學(xué)模型,從而達(dá)到用數(shù)學(xué)模型來解決實際問題。
3.中學(xué)數(shù)學(xué)建模的教學(xué)理念
數(shù)學(xué)來源于現(xiàn)實世界,數(shù)學(xué)的生命力在于,它能有效地解決現(xiàn)實世界向我們提出的各種問題,而數(shù)學(xué)模型正是聯(lián)系數(shù)學(xué)與現(xiàn)實世界的橋梁。因此,加強數(shù)學(xué)建模能力的培養(yǎng)是數(shù)學(xué)教育的關(guān)鍵之一。當(dāng)時代向著社會數(shù)學(xué)化、科學(xué)化發(fā)展時,學(xué)生不僅要學(xué)會數(shù)學(xué),而且要會用數(shù)學(xué)。教師不僅要教學(xué)生數(shù)學(xué)知識,而且要強化學(xué)生應(yīng)用數(shù)學(xué)的意識。只有學(xué)生能夠意識到數(shù)學(xué)存在于現(xiàn)實生活之中,并被廣泛應(yīng)用于現(xiàn)實世界,才能夠切實體會到數(shù)學(xué)的應(yīng)用價值,學(xué)習(xí)數(shù)學(xué)的積極性才能夠真正被激發(fā),如此獲得的數(shù)學(xué)知識、數(shù)學(xué)思想方法才有可能真正被用于解決現(xiàn)實生活中的問題。實施數(shù)學(xué)建模教學(xué)應(yīng)達(dá)到這樣的目標(biāo):使學(xué)生體會數(shù)學(xué)與自然及人類社會的密切聯(lián)系,體會數(shù)學(xué)的應(yīng)用價值,培養(yǎng)數(shù)學(xué)的應(yīng)用意識,增進(jìn)對數(shù)學(xué)的理解和應(yīng)用數(shù)學(xué)的信心,使學(xué)生學(xué)會運用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實社會,去解決日常生活中的問題,進(jìn)而形成勇于探索、勇于創(chuàng)新的科學(xué)精神。
數(shù)學(xué)建模是研究性學(xué)習(xí)和小組合作學(xué)習(xí)的重要形式。數(shù)學(xué)研究性學(xué)習(xí)的目標(biāo)是培養(yǎng)學(xué)生信息收集和處理能力,提高綜合應(yīng)用能力,獲得親自參與研究探索的積極體驗,學(xué)會溝通與合作。小組合作學(xué)習(xí)是當(dāng)前深受研究者重視的一種學(xué)習(xí)形式。小組合作學(xué)習(xí)的關(guān)鍵在于小組成員之間相互依賴、相互溝通、相互合作、共同負(fù)責(zé),從而達(dá)到共同的目標(biāo)。在數(shù)學(xué)建模教學(xué)中,教師通過設(shè)計實踐型研究性課題進(jìn)行數(shù)學(xué)建模應(yīng)用,能培養(yǎng)學(xué)生利用數(shù)學(xué)知識解決問題的能力,掌握研究解決問題的思想方法,增強學(xué)生學(xué)數(shù)學(xué)用數(shù)學(xué)的興趣,從而達(dá)到數(shù)學(xué)知識、數(shù)學(xué)創(chuàng)新意識、創(chuàng)新能力同步增長的目的,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,學(xué)會團(tuán)結(jié)協(xié)作,建立良好的人際關(guān)系。同時,數(shù)學(xué)建模教學(xué)有助于培養(yǎng)學(xué)生觀察理解能力、邏輯分析能力、實踐能力、交流能力、團(tuán)結(jié)協(xié)作能力、寫作表達(dá)能力。
4.中學(xué)數(shù)學(xué)建模的教學(xué)方法
國內(nèi)外數(shù)學(xué)教育工作者自20世紀(jì)80年代以來,從“中學(xué)數(shù)學(xué)教學(xué)”的角度,進(jìn)行了一系列的研究、探索,提出中學(xué)數(shù)學(xué)建模的目的在于培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,為學(xué)生創(chuàng)造發(fā)展空間,并要“探索一條數(shù)學(xué)的教改之路”;提出把數(shù)學(xué)建模摻和到中學(xué)數(shù)學(xué)課程中去,在課堂中增加數(shù)學(xué)建模練習(xí);提出數(shù)學(xué)建模的教學(xué)必須與學(xué)生掌握的數(shù)學(xué)知識水平密切相關(guān),強調(diào)以小組形式開展;提出中學(xué)數(shù)學(xué)建模的三種教學(xué)形式,課程教學(xué),課內(nèi)“切入”,課外活動。為了培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力,中學(xué)數(shù)學(xué)教學(xué)要求增強實踐意識,重視探究和應(yīng)用。學(xué)生要關(guān)注生產(chǎn)實踐和社會生活中的數(shù)學(xué)問題,關(guān)心身邊的數(shù)學(xué)問題,不斷提高數(shù)學(xué)的應(yīng)用意識,學(xué)會從實際問題中篩選有用的信息和數(shù)據(jù),研究其數(shù)量關(guān)系或數(shù)形關(guān)系,建立數(shù)學(xué)模型,進(jìn)而解決問題。教師應(yīng)注意抓住社會現(xiàn)實中運用數(shù)學(xué)知識加以解決的普遍性問題和社會熱點問題,讓學(xué)生開展討論、研究。從課程改革對中學(xué)生的能力要求和中學(xué)生智力水平特點的角度出發(fā),教師應(yīng)該實施一種順應(yīng)課程改革新理念的教學(xué)模式:課內(nèi)外相結(jié)合,小組合作方式。
數(shù)學(xué)建模教學(xué)要求教師以建模的視角對待和處理教學(xué)內(nèi)容,把基礎(chǔ)數(shù)學(xué)知識學(xué)習(xí)和應(yīng)用結(jié)合起來,使之符合“具體?邛抽象?邛具體”的認(rèn)知規(guī)律使學(xué)生通過實踐、交流、分析、整理,抽象其本質(zhì)。教師要概括學(xué)習(xí)的課題,滲透建模意識,介紹建模方法,以教師為主導(dǎo),學(xué)生為主體完成課題學(xué)習(xí)。教師要適時啟發(fā),引導(dǎo)調(diào)控,成為學(xué)生學(xué)習(xí)數(shù)學(xué)的組織者、合作者和共同研究者,對建立的模型,靈活應(yīng)用啟發(fā)式。數(shù)學(xué)建模教學(xué)應(yīng)結(jié)合正常的數(shù)學(xué)內(nèi)容進(jìn)行切入,把培養(yǎng)應(yīng)用數(shù)學(xué)的意識落實在平時的教學(xué)過程中,以教材為載體,以改革教學(xué)方法為突破口,通過對教學(xué)內(nèi)容的科學(xué)加工、處理和再創(chuàng)造達(dá)到在學(xué)中用,在用中學(xué),讓學(xué)生學(xué)習(xí)到數(shù)學(xué)的精神、思想和方法,進(jìn)一步培養(yǎng)學(xué)生的用數(shù)學(xué)意識、分析和解決實際問題的能力。
具體而言:教師要做有心人,從課本中的數(shù)學(xué)問題挖掘出生活模型,選擇緊貼社會實際的典型問題,深入分析,逐漸進(jìn)行這方面的訓(xùn)練,使學(xué)生養(yǎng)成自覺地把數(shù)學(xué)作為工具來用的意識。教師要以社會熱點問題出發(fā),編擬應(yīng)用題。教師要從其它學(xué)科中選擇應(yīng)用題,培養(yǎng)學(xué)生運用數(shù)學(xué)工具,解決該學(xué)科難題的能力。
教師應(yīng)選擇適當(dāng)?shù)臄?shù)學(xué)建模問題,創(chuàng)設(shè)合理的問題情境,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身學(xué)生使用,貼近學(xué)生生活實際的數(shù)學(xué)建模問題,同時注意問題的開放性與可擴展性。數(shù)學(xué)建模教學(xué)以創(chuàng)新性、現(xiàn)實性、真實性、合理性、有效性等方面作為標(biāo)準(zhǔn),對建模的要求不可太高,重在參與。數(shù)學(xué)建模問題難易應(yīng)適中,千萬不要搞一些脫離中學(xué)生實際的建模教學(xué)。一切教學(xué)活動必須以調(diào)動學(xué)生的主觀能動性,培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力為出發(fā)點,引導(dǎo)學(xué)生在自覺的學(xué)習(xí)過程中構(gòu)建數(shù)學(xué)建模意識。
5.結(jié)語
我們在開展“目標(biāo)教學(xué)”的同時,應(yīng)大力滲透“建模教學(xué)”,為中學(xué)數(shù)學(xué)課堂教學(xué)改革提供一條新路,也將為培養(yǎng)更多更好的“創(chuàng)造型”人才提供一個全新的舞臺。數(shù)學(xué)就是生活,生活離不開數(shù)學(xué),數(shù)學(xué)也不能和生活分離。時時有數(shù)學(xué),事事有數(shù)學(xué)。加強中學(xué)數(shù)學(xué)建模教學(xué)是現(xiàn)代教育的一個趨勢。鑒于當(dāng)前中學(xué)數(shù)學(xué)教學(xué)忽視應(yīng)用的實際,我們有必要調(diào)動師生參與建模教學(xué)的積極性,大力開展建模教學(xué)的活動,促進(jìn)中學(xué)數(shù)學(xué)建模教學(xué)的進(jìn)一步發(fā)展。中學(xué)數(shù)學(xué)教師應(yīng)繼續(xù)學(xué)習(xí)“數(shù)學(xué)模型”課程,準(zhǔn)確地把握數(shù)學(xué)建模問題的深度和難度,更好地推動中學(xué)數(shù)學(xué)建模教學(xué)的發(fā)展。
參考文獻(xiàn):
[1]周春荔.建模與中學(xué)數(shù)學(xué)教育[J].數(shù)學(xué)教育學(xué)報,1996,(5).
[2]王光明等.現(xiàn)代數(shù)學(xué)教育選講[M].重慶:西南師范大學(xué)出版社,1998,(3).
[3]張景斌,王尚志.中學(xué)數(shù)學(xué)建?;顒又袨閷W(xué)生創(chuàng)造發(fā)展空間[J].數(shù)學(xué)教育學(xué)報,2001,(10).
[4]李玉琪編譯.數(shù)學(xué)建模(前言)[J].數(shù)學(xué)通報,1995,(5).
[5]葉其孝.中學(xué)數(shù)學(xué)建模[M].長沙:湖南教育出版社,1998.
[6]馮永明,張啟凡.對“中學(xué)數(shù)學(xué)建模教學(xué)”的探討[J].數(shù)學(xué)教育學(xué)報,2000,(5).
[7]楊作義.寓數(shù)學(xué)建模于數(shù)學(xué)課堂教學(xué)之中[J].數(shù)學(xué)通報,2001,(10).
[8]仇金家.淺談中學(xué)數(shù)學(xué)建?;顒覽J].數(shù)學(xué)通報,2001,(2).
[9]中華人民共和國教育部制訂,普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗)[M].北京:人民教育出版社,2003.
2017研究生數(shù)學(xué)建模優(yōu)秀論文篇4
淺談高等數(shù)學(xué)中的數(shù)學(xué)建模思想
[摘要] 本文首先提出了在高等數(shù)學(xué)中數(shù)學(xué)建模的重要性,然后著重探討了如何在高等數(shù)學(xué)教學(xué)中利用數(shù)學(xué)建模的思想和方法。
[關(guān)鍵詞] 高等數(shù)學(xué) 數(shù)學(xué)建模 創(chuàng)新能力
數(shù)學(xué)建模,就是用數(shù)學(xué)語言去描述或模擬實際問題中的數(shù)量關(guān)系,一旦數(shù)學(xué)模型建立起來,實際的問題就轉(zhuǎn)化成了等價(或基本等價)的數(shù)學(xué)問題。數(shù)學(xué)建模活動是一個多次循環(huán)、反復(fù)驗證的過程,是應(yīng)用數(shù)學(xué)的語言和方法解決實際問題的過程,也是一個創(chuàng)造過程和培養(yǎng)創(chuàng)新能力的綜合過程。20世紀(jì)六七十年代西方國家的一些大學(xué)開始設(shè)置數(shù)學(xué)建模課程,80年代初數(shù)學(xué)建模課程開始進(jìn)入我國大學(xué)的課堂。1985年美國大學(xué)生數(shù)學(xué)建模競賽開始舉辦,1989年起我國部分高校選派代表隊參加這項競賽。1992年開始由中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(CSTAM)舉辦我國自己的全國大學(xué)生數(shù)學(xué)建模競賽(CMCM)。1994年改由國家教委高教司和中圍工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會共同舉辦。實踐表明,數(shù)學(xué)建模是對大學(xué)生進(jìn)行創(chuàng)新教育的有效途徑之一。
一、數(shù)學(xué)建模的過程及步驟
為把數(shù)學(xué)建模的思想和方法滲透到高等數(shù)學(xué)的教學(xué)中去,通常應(yīng)該在學(xué)習(xí)高等數(shù)學(xué)的過程中增加一些關(guān)于數(shù)學(xué)建模的概述,也可以平行地開一門關(guān)于數(shù)學(xué)建模與數(shù)學(xué)實驗的課程,讓學(xué)生熟悉數(shù)學(xué)建模的全過程。通常在教學(xué)和科研中常常使用的是八步建模法,主要包括以下八個步驟:
1.問題的提出。提出問題是解決問題的關(guān)鍵一步,很多問題沒有得到很好解決,其原因是問題沒有提好。問題的提出是在面對實際的研究對象時,能夠很快弄清楚問題的來龍去脈,抓住問題的本質(zhì),確定問題的已知和目標(biāo)。
2.量的分析。數(shù)學(xué)的一項主要任務(wù)就是研究數(shù)量之間的關(guān)系,數(shù)學(xué)建模過程就是要搞清楚這些量之間的關(guān)系。
3.模型假設(shè)。模型假設(shè)是建立數(shù)學(xué)模型的前提和已知條件。為了準(zhǔn)確把握實際問題的本質(zhì)屬性,必須將問題理想化、簡單化,抓住問題的本質(zhì)和主要因素,進(jìn)行必要的假設(shè)。
4.模型建立。在前三步的基礎(chǔ)上,根據(jù)某種規(guī)律,依據(jù)模型假設(shè),建立變量和參數(shù)間的函數(shù)關(guān)系。
5.模型求解。建模是為了解決實際問題,所以還要對上述建立的數(shù)學(xué)模型進(jìn)行數(shù)學(xué)上的求解,包括計算機技術(shù)的應(yīng)用。
6.模型分析。根據(jù)建模的目的要求,對模型求得的結(jié)果進(jìn)行數(shù)學(xué)上的分析,利用相關(guān)知識結(jié)合研究對象的特點進(jìn)行模型合理性分析。
7.模型檢驗。建模是否正確,還必須進(jìn)行模型的檢驗。模型檢驗有兩種方法:一是實際檢驗,就是回到客觀實際中對模型進(jìn)行檢驗;二是邏輯檢驗,這一檢驗法主要是找出矛盾,否定模型。究竟選用哪種檢驗方法,應(yīng)視具體情況而定。
8.模型應(yīng)用。模型應(yīng)用是數(shù)學(xué)建模的宗旨,也是對模型的最客觀、最公正的檢驗。
二、培養(yǎng)數(shù)學(xué)建模思維
數(shù)學(xué)建模中關(guān)鍵的思想方法就是通過對現(xiàn)實問題的觀察、歸納和假設(shè),將其轉(zhuǎn)化為一個數(shù)學(xué)問題,得到所求的解。但這還只是完成了數(shù)學(xué)建模的一方面,在實際問題中看能否解釋實際問題,能否與實際經(jīng)驗或數(shù)據(jù)相吻合,若吻合數(shù)學(xué)建模過程就完成了,否則還需要修正假設(shè)并重新提出經(jīng)修正的數(shù)學(xué)模型。因此數(shù)學(xué)建模中數(shù)學(xué)建模思維能力特別重要,如果不能把實際問題用數(shù)學(xué)語言翻譯出來,那么,整個數(shù)學(xué)建模就無法進(jìn)行。如果不能把數(shù)學(xué)建模的結(jié)果用普通人能懂的語言表述出來,那就可能大大地降低它的應(yīng)用價值。對于現(xiàn)實中的實際問題,如何抓住問題的實質(zhì)進(jìn)行一定的抽象、簡化,用數(shù)學(xué)語言表達(dá)出來,是解決問題的首要步驟,這種翻譯能力在高等數(shù)學(xué)的教學(xué)中是有要求的,從而也是學(xué)生易于掌握的。但是對于后一種翻譯能力卻要求甚少,因此,對應(yīng)用數(shù)學(xué)方法推理或計算得到的結(jié)果,不僅要重視解釋、檢驗、討論,更重要的是能用語言表達(dá)出來,或能結(jié)合實際解釋其意義。
三、數(shù)學(xué)建模思想在教學(xué)中的滲透
大量的實踐表明,人們一旦掌握了數(shù)學(xué)建模的思想和方法,將會在處理實際問題中如虎添翼,受益無窮。因此,教師在教學(xué)中就更應(yīng)該注重數(shù)學(xué)建模思想的滲透以及數(shù)學(xué)方法的介紹,強調(diào)數(shù)學(xué)知識的應(yīng)用性。培養(yǎng)學(xué)生自覺運用數(shù)學(xué)建模的思想和方法去解決實際問題的應(yīng)用意識與能力。在高等數(shù)學(xué)中,涉及其相關(guān)內(nèi)容的教學(xué)有:導(dǎo)數(shù)的應(yīng)用、定積分的應(yīng)用、重積分的應(yīng)用、曲線與曲面積分的應(yīng)用、微分方程的應(yīng)用等。這些都是不容忽視的,教學(xué)中要力求講清建模的思路及求解方法,使學(xué)員感受到數(shù)學(xué)應(yīng)用有前景有趣味,數(shù)學(xué)是幫助人們解決實際問題的必不可少的一種工具,從而提高興趣,增強信心,養(yǎng)成自覺地建立數(shù)學(xué)模型解決實際問題的習(xí)慣。
四、強調(diào)數(shù)學(xué)概念與實際問題的聯(lián)系
數(shù)學(xué)概念一般來源于社會實踐,概念產(chǎn)生后又反過來為社會實踐服務(wù)。在介紹概念的含義后,要重視概念與實際結(jié)合,突出應(yīng)用價值。例如,在學(xué)習(xí)導(dǎo)數(shù)的概念時,我們提到導(dǎo)數(shù)是一個十分重要的數(shù)學(xué)模型。它雖然由瞬時速度而導(dǎo)人,但它的意義遠(yuǎn)遠(yuǎn)超出了力學(xué)的范圍,而滲透到科學(xué)技術(shù)的各個領(lǐng)域。這里可以舉些簡單例子如:速度、加速度、電流強度、線速度、角速度等。然后可以這樣提問:“你能舉出其他的例子嗎?”這時,全班同學(xué)紛紛舉手要求發(fā)言。“種群的生長率和死亡率”、“放射性物質(zhì)的衰變率”、“戰(zhàn)爭中物質(zhì)和戰(zhàn)斗力的損耗率”、“冷卻過程的溫度變化率”……同學(xué)們想出了許多種不同的例子,顯示出思維非?;钴S。這時教師要不失時機地給出總結(jié)——數(shù)學(xué)上統(tǒng)稱為函數(shù)的變化率,都與導(dǎo)數(shù)有不解之緣。這樣學(xué)生不僅體會到數(shù)學(xué)概念的實際意義與應(yīng)用價值,同時他們也會為導(dǎo)數(shù)的巨大魅力而傾倒。
五、培養(yǎng)教師的創(chuàng)造性思維和數(shù)學(xué)建模思想
在教學(xué)中融合數(shù)學(xué)建模的思想,改進(jìn)教學(xué)方式。當(dāng)前高等院校有些基礎(chǔ)理論課程還基本停留在“填鴨式”、“滿堂灌”的教學(xué)方式,因此,利用數(shù)學(xué)建模這個強有力的工具,就可以在實際的教學(xué)中增加一些實踐的環(huán)節(jié),并且引導(dǎo)學(xué)生掌握“發(fā)動機”式的學(xué)習(xí)方法。在大學(xué)教育中融合數(shù)學(xué)建模的思想,要求教師掌握“發(fā)動機”式的教學(xué)方法,學(xué)生掌握“發(fā)動機”式的學(xué)習(xí)方法,逐步培養(yǎng)大學(xué)生自主創(chuàng)新學(xué)習(xí),讓學(xué)習(xí)由心而發(fā),擺脫被動學(xué)習(xí)模式。還可以參加全國大學(xué)生數(shù)學(xué)建模競賽為契機,逐步建立大學(xué)創(chuàng)新教育課程體系。比如在數(shù)學(xué)基礎(chǔ)理論課程中可以增加一些應(yīng)用型和實踐類的課程,例如“運籌學(xué)”、“數(shù)學(xué)模型”、“數(shù)學(xué)實驗”以及“計算方法”等等課程;在其余與數(shù)學(xué)相關(guān)的各門課程的教學(xué)中,也要盡量使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實際應(yīng)用方面的內(nèi)容,從而使教學(xué)內(nèi)容得到更新。
創(chuàng)新有著豐富的內(nèi)涵,包括敢于競爭、敢于冒險的精神,腳踏實地、勤奮求實的務(wù)實態(tài)度,鍥而不舍、堅定執(zhí)著的頑強意志,不畏艱難、艱苦創(chuàng)業(yè)的心理準(zhǔn)備,良好的心態(tài)、自控能力、團(tuán)隊精神與協(xié)作意識等多方面的品質(zhì)。高校人才培養(yǎng)的質(zhì)量和成果價值最終都取決于教師。具有較高創(chuàng)造性思維修養(yǎng)和創(chuàng)造精神的教師,才能培養(yǎng)出具有質(zhì)疑精神和思考能力的學(xué)生,學(xué)生才敢于冒險、敢于探索,才會突破常規(guī),進(jìn)行創(chuàng)造性的研究性學(xué)習(xí)。沒有一支創(chuàng)造性的教師隊伍,就不可能培養(yǎng)出具有創(chuàng)新創(chuàng)業(yè)品質(zhì)的學(xué)生。實踐表明,數(shù)學(xué)建模教學(xué)可以為高校順利開展大學(xué)生創(chuàng)新教育奠定一個良好的師資基礎(chǔ)。
參考文獻(xiàn):
[1]李同勝.數(shù)學(xué)素質(zhì)教育教學(xué)新體系和實驗報告[J].教育研究,1997(6):2-3.
[2]姜啟源,謝金星,葉俊.數(shù)學(xué)模型[M].北京:高等教育出版社,2003.
[3]袁國強,張文良.數(shù)學(xué)建模是對大學(xué)生進(jìn)行創(chuàng)新教育的有效途徑金融教學(xué)與研究[J].2009(4):76.
猜你喜歡:
1.2017全國研究生數(shù)學(xué)建模競賽優(yōu)秀論文
2.2017研究生數(shù)學(xué)建模優(yōu)秀論文