特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦 > 教育資訊 > 熱點 > 2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

時間: 美琪0 分享

2023廣西高考數學試卷及答案(文科)_超詳解析

小編整理了2023廣西高考數學試卷及答案(文科),數學起源于人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,并能應用實際問題。下面是小編為大家整理的2023廣西高考數學試卷及答案(文科),希望能幫助到大家!

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)

2023廣西高考數學試卷及答案(文科)



高中數學重要知識點歸納

1、求函數的單調性:

利用導數求函數單調性的基本方法:設函數yf(x)在區(qū)間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區(qū)間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區(qū)間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區(qū)間(a,b)上為常數函數。

利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內的不間斷區(qū)間為減區(qū)間。

反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區(qū)間(a,b)內可導,

(1)如果函數yf(x)在區(qū)間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區(qū)間);

(2)如果函數yf(x)在區(qū)間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區(qū)間);

(3)如果函數yf(x)在區(qū)間(a,b)上為常數函數,則f(x)0恒成立。

2、求函數的極值:

設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值)。

可導函數的極值,可通過研究函數的單調性求得,基本步驟是:

(1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時,f(x)和f(x)值的變化情況:

(4)檢查f(x)的符號并由表格判斷極值。

3、求函數的值與最小值:

如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值。函數在定義域內的極值不一定,但在定義域內的最值是的。

求函數f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。

4、解決不等式的有關問題:

(1)不等式恒成立問題(絕對不等式問題)可考慮值域。

f(x)(xA)的值域是[a,b]時,

不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)時,

不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0。

5、導數在實際生活中的應用:

實際生活求解(小)值問題,通常都可轉化為函數的最值。在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明。

高中數學導數知識點總結

(一)導數第一定義

設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數取得增量△y=f(x0+△x)—f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f(x0),即導數第一定義

(二)導數第二定義

設函數y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x—x0也在該鄰域內)時,相應地函數變化△y=f(x)—f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限值為函數y=f(x)在點x0處的導數記為f(x0),即導數第二定義

(三)導函數與導數

如果函數y=f(x)在開區(qū)間I內每一點都可導,就稱函數f(x)在區(qū)間I內可導。這時函數y=f(x)對于區(qū)間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y=f(x)的導函數,記作y,f(x),dy/dx,df(x)/dx。導函數簡稱導數。

(四)單調性及其應用

1、利用導數研究多項式函數單調性的一般步驟

(1)求f(x)

(2)確定f(x)在(a,b)內符號(3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數

2、用導數求多項式函數單調區(qū)間的一般步驟

(1)求f(x)

(2)f(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間;f(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間。

1980843