北京高考數(shù)學(xué)試卷2022電子版
普通高等學(xué)校招生全國統(tǒng)一考試簡稱“高考”,是合格的高中畢業(yè)生或具有同等學(xué)歷的考生參加的全國統(tǒng)一選拔性考試。下面小編為大家?guī)肀本└呖紨?shù)學(xué)試卷2022電子版,希望對您有幫助,歡迎參考閱讀!
2022年北京高考數(shù)學(xué)試卷及答案
數(shù)學(xué)答題技巧
合理安排每道題的時間
正常情況下,解決一道中等難度的數(shù)學(xué)選擇題,所用的時間是三分鐘。解決一道中等難度的數(shù)學(xué)主觀題,需要十五分鐘左右。
我監(jiān)考的時候,特意觀察過學(xué)生們的答題速度。
多數(shù)高三學(xué)生們,在做數(shù)學(xué)題時,四十分鐘左右,就可以做完數(shù)學(xué)選擇題。遇到不會的選擇題,直接按照選項出現(xiàn)的比例,蒙一個選項。
數(shù)學(xué)填空題的前兩道題,多數(shù)同學(xué)可以解決,剩下不會的題直接跳過。
同學(xué)們至少給后面的主觀題,留一個小時的答題時間,才能保證把會做的題都寫上。
高考數(shù)學(xué)沖刺必背知識點
1、混淆命題的否定與否命題
命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。
2、忽視集合元素的三性致誤
集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。
3、判斷函數(shù)奇偶性忽略定義域致誤
判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。
4、函數(shù)零點定理使用不當(dāng)致誤
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。
5、函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤
在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學(xué)會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
6、三角函數(shù)的單調(diào)性判斷致誤
對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。
7、向量夾角范圍不清致誤
解題時要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。
8、忽視零向量致誤
零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應(yīng)給予足夠的重視。
9、對數(shù)列的定義、性質(zhì)理解錯誤
等差數(shù)列的前n項和在公差不為零時是關(guān)于n的常數(shù)項為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N_)是等差數(shù)列。
10、an與Sn關(guān)系不清致誤
在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個關(guān)系對任意數(shù)列都是成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點。
北京高考數(shù)學(xué)試卷2022電子版相關(guān)文章:
★ 2022年全國新高考II卷數(shù)學(xué)真題及答案
★ 2022年全國新高考1卷數(shù)學(xué)高考真題
★ 2022年新高考Ⅱ卷數(shù)學(xué)真題試卷及答案
★ 2022全國甲卷高考數(shù)學(xué)文科試卷及答案解析