六年級數學知識點歸納最全版
從這個意義上,數學屬于形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。下面小編為大家?guī)?a href='http://www.rzpgrj.com/xuexiff/liunianjishuxue/' target='_blank'>六年級數學知識點歸納最全版,希望大家喜歡!
六年級數學知識點歸納
一、算術
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有余數的除法: 被除數=商×除數+余數
二、方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,并且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
三、分數
分數:把單位“1”平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的.分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然后再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等于分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等于乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大于或等于1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
必背定義、定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等于乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
六年級數學??贾R點匯總
2.1分數與除法
一般地,兩個正整數相除的商可用分數表示,即被除數÷除數=用字母表示為p÷q=(p、q為正整數)
2.2分數的基本性質
1.分數的分子和分母同時乘以一個不為零的整數,分數的值不變
2.分子分母只有公因數1的分數叫做最簡分數
3.把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分
2.3分數的比較大小
1.同分母分數的大小只需要比較分子的大小,分子大的比較大,分子小的比較小
2.通分的一般步驟是:
(1)求公分母——求分母的最小公倍數;
(2)根據分數的基本性質,將每個分數化成分母相同的分數。
3.異分母分數比較大小需要先通分成同分母分數再按照同分母分數比較大小
2.4分數的加減法
1.同分母分數相加減,分母不變,分子相加減
2.異分母分數相加減,先通分成同分母分數,再按照同分母分數相加減
3.分子比分母小的分數,叫做真分數
4.分子大于或者等于分母的分數叫假分數
5.整數與真分數相加所成的分數叫做帶分數
6.假分數化為帶分數:分母不變,整數部分為原分子除以分母的商,分子則為原分子除以分母的余數
7.列方程求未知數的一般書寫步驟:
(1)設未知數為x
(2)根據題意列出方程
(3)根據加減互為逆運算,表示出x等于那些數相加減
(4)計算出x的值,并寫出上結論
2.5分數的乘法
1.兩個分數相乘,分子相乘作為分子,分母相乘作為分母
2.如果乘數是帶分數,先化成假分數,再進行運算
2.6分數的除法
1.一個數與其相乘的積為1的數為這個數的倒數;0沒有倒數
2.除以一個分數等于乘以這個分數的倒數
3.被除數或除數中有帶分數的先化成假分數再進行運算
2.7分數與小數的互化
1.一個分數能不能化為有限小數和分數的分母有關
2.從小數點后某一位開始不斷地重復出現前一個或一節(jié)數字的無限小數叫做循環(huán)小數
3.被重復的一個或一節(jié)數碼稱為循環(huán)小數的循環(huán)節(jié)
4.一個分數總可以化為有限小數或無線循環(huán)小數
數學學習計劃
復習內容:
1、掌握數的順序和大小,掌握9以內各數的組成。
2、初步知道加、減法的含義和加減法算式中各部分部分名稱,初步知道加法和減法的關系,比較熟練地計算一位數的加法和9以內的減法。
3、初步學會根據加、減法的含義和算法解決一些簡單的實際問題。
4、直觀認識長方體、正方體、圓柱、球、長方形、正方形、三角形和圓。
5、初步了解分類的方法,會進行簡單的分類。
6、認真作業(yè)、書寫整潔的良好習慣。
7、通過實踐活動體驗數學與日常生活的密切聯系。
復習目標:
1、理解加、減法的含義,進一步理解和掌握9以內的加、減法,能正確、熟練地口算相關的式題,形成相應的計算技能。
2、在具體的活動中,進一步認識長方體、正方體、圓柱和球,認識上下、前后、左右等方位,能應用分一分、排一排、數一數等方法收集和整理一些簡單的數據,培養(yǎng)初步的空間觀念和統計觀念。
3、在應用所學知識解決簡單實際問題的過程中,進一步發(fā)展分析問題、解決問題的能力,體會數學在日常生活中的廣泛應用,培養(yǎng)初步的數學應用意識。
復習措施:
1、復習前,充分了解學生的學習情況,弄清學生對哪些知識掌握的比較好,哪些知識還存在問題,存在什么問題,從而有計劃、有針對性地開展復習活動,以增強復習的實效性。
2、復習加減法計算時,可以采用游戲、競賽等多種形式組織學生練習,以激發(fā)學生練習的興趣,提高計算的正確率和熟練程度,促進計算技能的形成。
3、扎扎實實打好基礎知識和基本技能,同時重視培養(yǎng)學生創(chuàng)新意識和學習數學的興趣。
4、把握好知識的重點、難點以及知識間的內在聯系,使學生都在原來的基礎上有所提高。
5、把上半學期所學知識分塊歸類復習,針對單元測試卷、練習冊、作業(yè)中容易出錯的題作重點的滲透復習、設計專題活動,滲透各項數學知識。專題活動的設計可以使復習的內容綜合化,給學生比較全面地運用所學知識的機會。
6、根據平時教學了解的情況,結合復習有關的知識點做好有困難學生的輔導工作。
六年級數學知識點歸納最全版相關文章: