小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)基礎(chǔ)知識(shí)點(diǎn)
小學(xué)四年級(jí)要想學(xué)好知識(shí),就必須要學(xué)會(huì)掌握鞏固好重要知識(shí)點(diǎn),下面小編為大家?guī)?lái)小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)基礎(chǔ)知識(shí)點(diǎn),歡迎大家參考閱讀,希望能夠幫助到大家!
小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)基礎(chǔ)知識(shí)點(diǎn)
一、加法運(yùn)算定律:
1、加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。a+b=b+a
2、加法結(jié)合律:三個(gè)數(shù)相加,可以先把前兩個(gè)數(shù)相加,再加上第三個(gè)數(shù);或者先把后兩個(gè)數(shù)相加,再加上第一個(gè)數(shù),和不變。(a+b)+c=a+(b+c)
加法的這兩個(gè)定律往往結(jié)合起來(lái)一起使用。
如:165+93+35=93+(165+35)依據(jù)是什么?
3、連減的性質(zhì):一個(gè)數(shù)連續(xù)減去兩個(gè)數(shù),等于這個(gè)數(shù)減去那兩個(gè)數(shù)的和。a-b-c=a-(b+c)
二、乘法運(yùn)算定律:
1、乘法交換律:兩個(gè)數(shù)相乘,交換因數(shù)的位置,積不變。a×b=b×a
2、乘法結(jié)合律:三個(gè)數(shù)相乘,可以先把前兩個(gè)數(shù)相乘,再乘以第三個(gè)數(shù),也可以先把后兩個(gè)數(shù)相乘,再乘以第一個(gè)數(shù),積不變。(a×b)×c=a×(b×c)
乘法的這兩個(gè)定律往往結(jié)合起來(lái)一起使用。如:125×78×8的簡(jiǎn)算
3、乘法分配律:兩個(gè)數(shù)的和與一個(gè)數(shù)相乘,可以先把這兩個(gè)數(shù)分別與這個(gè)數(shù)相乘,再把積相加。
(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c
小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)重要知識(shí)點(diǎn)
1、加法、減法、乘法和除法統(tǒng)稱四則運(yùn)算。
2、在沒(méi)有括號(hào)的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計(jì)算。
3、在沒(méi)有括號(hào)的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。
4、算式有括號(hào),要先算括號(hào)里面的,再算括號(hào)外面的;括號(hào)里面的算式計(jì)算順序遵循以上的計(jì)算順序。
5、先乘除,后加減,有括號(hào),提前算
關(guān)于“0”的運(yùn)算
1、“0”不能做除數(shù); 字母表示:a÷0錯(cuò)誤
2、一個(gè)數(shù)加上0還得原數(shù); 字母表示:a+0=a
3、一個(gè)數(shù)減去0還得原數(shù); 字母表示:a-0=a
4、被減數(shù)等于減數(shù),差是0; 字母表示:a-a=0
5、一個(gè)數(shù)和0相乘,仍得0; 字母表示:a×0=0
6、0除以任何非0的數(shù),還得0; 字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商; 5÷0得不到商.(無(wú)意義)
小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)復(fù)習(xí)知識(shí)點(diǎn)
(1)已知總頭數(shù)和總腳數(shù),求雞、兔各多少:
(總腳數(shù)-每只雞的腳數(shù)×總頭數(shù))÷(每只兔的腳數(shù)-每只雞的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)。
或者是(每只兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(每只兔腳數(shù)-每只雞腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。
例如,“有雞、兔共36只,它們共有腳100只,雞、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二(4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答略)
(2)已知總頭數(shù)和雞兔腳數(shù)的差數(shù),當(dāng)雞的總腳數(shù)比兔的總腳數(shù)多時(shí),可用公式
(每只雞腳數(shù)×總頭數(shù)-腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)
或(每只兔腳數(shù)×總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只免的腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。(例略)
(3)已知總數(shù)與雞兔腳數(shù)的差數(shù),當(dāng)兔的總腳數(shù)比雞的總腳數(shù)多時(shí),可用公式。
(每只雞的腳數(shù)×總頭數(shù)+雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=兔數(shù);
總頭數(shù)-兔數(shù)=雞數(shù)。
或(每只兔的腳數(shù)×總頭數(shù)-雞兔腳數(shù)之差)÷(每只雞的腳數(shù)+每只兔的腳數(shù))=雞數(shù);
總頭數(shù)-雞數(shù)=兔數(shù)。(例略)
(4)得失問(wèn)題(雞兔問(wèn)題的推廣題)的解法,可以用下面的公式:
(1只合格品得分?jǐn)?shù)×產(chǎn)品總數(shù)-實(shí)得總分?jǐn)?shù))÷(每只合格品得分?jǐn)?shù)+每只不合格品扣分?jǐn)?shù))=不合格品數(shù)?;蛘呤强偖a(chǎn)品數(shù)-(每只不合格品扣分?jǐn)?shù)×總產(chǎn)品數(shù)+實(shí)得總分?jǐn)?shù))÷(每只合格品得分?jǐn)?shù)+每只不合格品扣分?jǐn)?shù))=不合格品數(shù)。
例如,“燈泡廠生產(chǎn)燈泡的工人,按得分的多少給工資。每生產(chǎn)一個(gè)合格品記4分,每生產(chǎn)一個(gè)不合格品不僅不記分,還要扣除15分。某工人生產(chǎn)了1000只燈泡,共得3525分,問(wèn)其中有多少個(gè)燈泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(個(gè))
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個(gè))(答略)
(“得失問(wèn)題”也稱“運(yùn)玻璃器皿問(wèn)題”,運(yùn)到完好無(wú)損者每只給運(yùn)費(fèi)_元,破損者不僅不給運(yùn)費(fèi),還需要賠成本_元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問(wèn)題(已知總腳數(shù)及雞兔互換后總腳數(shù),求雞兔各多少的問(wèn)題),可用下面的公式:
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)和)+(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=雞數(shù);
〔(兩次總腳數(shù)之和)÷(每只雞兔腳數(shù)之和)-(兩次總腳數(shù)之差)÷(每只雞兔腳數(shù)之差)〕÷2=兔數(shù)。
例如,“有一些雞和兔,共有腳44只,若將雞數(shù)與兔數(shù)互換,則共有腳52只。雞兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
雞兔同籠
1、雞兔同籠屬于假設(shè)問(wèn)題,假設(shè)的和最后結(jié)果相反。
2、“雞兔同籠”問(wèn)題的解題方法
假設(shè)法:
①假如都是兔
②假如都是雞
③古人“抬腳法”:
解答思路:
假如每只雞、每只兔各抬起一半的腳,則每只雞就變成了“獨(dú)腳雞”,每只兔就變成了“雙腳兔”。這樣,雞和兔的腳的總數(shù)就少了一半。這種思維方法叫化歸法。
3、公式:
雞兔總腳數(shù)÷2-雞兔總數(shù)=兔的只數(shù);
雞兔總數(shù)-兔的只數(shù)=雞的只數(shù)。