反比例函數(shù)知識點
數(shù)學學習反比例函數(shù)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學地發(fā)現(xiàn)問題,并能運用已有的數(shù)學知識,給以一定的解釋.反比例函數(shù)知識點有哪些?一起來看看反比例函數(shù)知識點,歡迎查閱!
反比例函數(shù)的定義
定義:形如函數(shù)y=k/x(k為常數(shù)且k≠0)叫做反比例函數(shù),其中k叫做比例系數(shù),x是自變量,y是自變量x的函數(shù),x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)的性質(zhì)
函數(shù)y=k/x 稱為反比例函數(shù),其中k≠0,其中X是自變量,
1.當k>0時,圖象分別位于第一、三象限,同一個象限內(nèi),y隨x的增大而減小;當k<0時,圖象分別位于二、四象限,同一個象限內(nèi),y隨x的增大而增大。
2.k>0時,函數(shù)在x<0上同為減函數(shù)、在x>0上同為減函數(shù);k<0時,函數(shù)在x<0上為增函數(shù)、在x>0上同為增函數(shù)。
3.x的取值范圍是: x≠0;
y的取值范圍是:y≠0。
4..因為在y=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸相交,也不可能與y軸相交。 但隨著x無限增大或是無限減少,函數(shù)值無限趨近于0,故圖像無限接近于x軸
5. 反比例函數(shù)的圖象既是軸對稱圖形,又是中心對稱圖形,它有兩條對稱軸 y=x y=-x(即第一三,二四象限角平分線),對稱中心是坐標原點。
反比例函數(shù)的一般形式
(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。
其中,x是自變量,y是函數(shù)。由于x在分母上,故取x≠0的一切實數(shù),看函數(shù)y的取值范圍,因為k≠0,且x≠0,所以函數(shù)值y也不可能為0。
補充說明:1.反比例函數(shù)的解析式又可以寫成: (k是常數(shù),k≠0).
2.要求出反比例函數(shù)的解析式,利用待定系數(shù)法求出k即可.
反比例函數(shù)解析式的特征
⑴等號左邊是函數(shù),等號右邊是一個分式。分子是不為零的常數(shù)(也叫做比例系數(shù)),分母中含有自變量,且指數(shù)為1。
⑵比例系數(shù)
⑶自變量的取值為一切非零實數(shù)。
⑷函數(shù)的取值是一切非零實數(shù)。
反比例函數(shù)高一數(shù)學知識點
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為?k?。
如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。
當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。
知識點:
1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
反比例函數(shù)知識點總結(jié)
1、反比例函數(shù)的表達式
X是自變量,Y是X的函數(shù)
y=k/x=k?1/x
xy=k
y=k?x^(-1)(即:y等于x的負一次方,此處X必須為一次方)
y=kx(k為常數(shù)且k≠0,x≠0)若y=k/nx此時比例系數(shù)為:k/n
2、函數(shù)式中自變量取值的范圍
①k≠0;②在一般的情況下,自變量x的取值范圍可以是不等于0的任意實數(shù);③函數(shù)y的取值范圍也是任意非零實數(shù)。
解析式y(tǒng)=k/x其中X是自變量,Y是X的函數(shù),其定義域是不等于0的一切實數(shù)
y=k/x=k?1/x
xy=k
y=k?x^(-1)
y=kx(k為常數(shù)(k≠0),x不等于0)
3、反比例函數(shù)圖象
反比例函數(shù)的圖像屬于以原點為對稱中心的中心對稱的雙曲線(hyperbola),
反比例函數(shù)圖像中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標軸相交(K≠0)。
4、反比例函數(shù)中k的幾何意義是什么?有哪些應用?
過反比例函數(shù)y=k/x(k≠0),圖像上一點P(x,y),作兩坐標軸的垂線,兩垂足、原點、P點組成一個矩形,矩形的面積S=x的絕對值_y的.絕對值=(x_y)的絕對值=|k|
研究函數(shù)問題要透視函數(shù)的本質(zhì)特征。反比例函數(shù)中,比例系數(shù)k有一個很重要的幾何意義,那就是:過反比例函數(shù)圖象上任一點P作x軸、y軸的垂線PM、PN,垂足為M、N則矩形PMON的面積S=PM?PN=|y|?|x|=|xy|=|k|。
所以,對雙曲線上任意一點作x軸、y軸的垂線,它們與x軸、y軸所圍成的矩形面積為常數(shù)。從而有k的絕對值。在解有關反比例函數(shù)的問題時,若能靈活運用反比例函數(shù)中k的幾何意義,會給解題帶來很多方便。
5、反比例函數(shù)性質(zhì)有哪些?
1.當k>0時,圖象分別位于第一、三象限,同一個象限內(nèi),y隨x的增大而減小;當k<0時,圖象分別位于二、四象限,同一個象限內(nèi),y隨x的增大而增大。
2.k>0時,函數(shù)在x<0上同為減函數(shù)、在x>0上同為減函數(shù);k<0時,函數(shù)在x<0上為增函數(shù)、在x>0上同為增函數(shù)。定義域為x≠0;值域為y≠0。
3.因為在y=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸相交,也不可能與y軸相交。
4.在一個反比例函數(shù)圖象上任取兩點P,Q,過點P,Q分別作x軸,y軸的平行線,與坐標軸圍成的矩形面積為S1,S2則S1=S2=|K|
5.反比例函數(shù)的圖象既是軸對稱圖形,又是中心對稱圖形,它有兩條對稱軸y=xy=-x(即第一三,二四象限角平分線),對稱中心是坐標原點。
6.若設正比例函數(shù)y=mx與反比例函數(shù)y=n/x交于A、B兩點(m、n同號),那么AB兩點關于原點對稱。
7.設在平面內(nèi)有反比例函數(shù)y=k/x和一次函數(shù)y=mx+n,要使它們有公共交點,則n^2+4k?m≥(不小于)0。
8.反比例函數(shù)y=k/x的漸近線:x軸與y軸。
9.反比例函數(shù)關于正比例函數(shù)y=x,y=-x軸對稱,并且關于原點中心對稱.
10.反比例上一點m向x、y分別做垂線,交于q、w,則矩形mwqo(o為原點)的面積為|k|
11.k值相等的反比例函數(shù)重合,k值不相等的反比例函數(shù)永不相交。
12.|k|越大,反比例函數(shù)的圖象離坐標軸的距離越遠。
13.反比例函數(shù)圖象是中心對稱圖形,對稱中心是原點
反比例函數(shù)知識點相關文章: