改善初中數(shù)學(xué)做題慢的技巧
很多同學(xué)每次考試都會(huì)做不完題,導(dǎo)致會(huì)做的也來(lái)不及做。想要改善這個(gè)問(wèn)題,那么接下來(lái)給大家分享一些關(guān)于改善初中數(shù)學(xué)做題慢的技巧,希望對(duì)大家有所幫助。
改善初中數(shù)學(xué)做題慢的技巧
1、熟悉基本的解題步驟和解題方法
解題的過(guò)程,是一個(gè)思維的過(guò)程。對(duì)一些基本的、常見(jiàn)的問(wèn)題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。
2、審題要認(rèn)真仔細(xì)。
對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。審題的步是讀題,這是獲取信息量和思考的過(guò)程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話(huà)的內(nèi)在涵義,并從中找出隱含條件。
有些學(xué)生沒(méi)有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開(kāi)始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來(lái),還找不到原因,想快卻慢了。所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
3、認(rèn)真做好歸納總結(jié)
在解過(guò)一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類(lèi)似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。
4、熟悉習(xí)題中所涉及的內(nèi)容
解題、做練習(xí)只是學(xué)習(xí)過(guò)程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。因此,我們?cè)诮忸}之前,應(yīng)通過(guò)閱讀教科書(shū)和做簡(jiǎn)單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。
5、學(xué)會(huì)畫(huà)圖
畫(huà)圖是一個(gè)翻譯的過(guò)程,,把解題時(shí)的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫(huà)出來(lái),其中的關(guān)系就變得一目了然。尤其是對(duì)于幾何題,包括解析幾何題,若不會(huì)畫(huà)圖,有時(shí)簡(jiǎn)直是無(wú)從下手因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過(guò)程和條件,對(duì)于提高解題速度非常重要。
6、先易后難,逐步增加習(xí)題的難度
人們認(rèn)識(shí)事物的過(guò)程都是從簡(jiǎn)單到復(fù)雜。簡(jiǎn)單的問(wèn)題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。
我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡(jiǎn)單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。
數(shù)學(xué)大題答題方法
數(shù)學(xué)三角函數(shù)
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用數(shù)學(xué)歸一公式、誘導(dǎo)公式(奇變、偶不變;符號(hào)看象限)時(shí),很容易因?yàn)榇中?,?dǎo)致錯(cuò)誤!一著不慎,滿(mǎn)盤(pán)皆輸!)。
數(shù)列
1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫(xiě)上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;
2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫(xiě)上綜上:由①②得證;
3、證明數(shù)學(xué)不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單(所以要有構(gòu)造函數(shù)的意識(shí))。
數(shù)學(xué)立體幾何
1、證明數(shù)學(xué)線(xiàn)面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;
2、求異面直線(xiàn)所成的角、線(xiàn)面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),最好要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號(hào)問(wèn)題、鈍角、銳角問(wèn)題)。
數(shù)學(xué)概率
1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);
2、搞清是什么數(shù)學(xué)概率模型,套用哪個(gè)公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);
5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意“零散的”的知識(shí)點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問(wèn)題。
高考數(shù)學(xué)易錯(cuò)點(diǎn)分析
1 易錯(cuò)點(diǎn):遺忘空集致誤
錯(cuò)因分析:由于數(shù)學(xué)空集是任何非空集合的真子集,因此,對(duì)于集合B,就有B=A,φ≠B,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。
尤其是在解含有參數(shù)的集合問(wèn)題時(shí),更要充分注意當(dāng)數(shù)學(xué)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況??占且粋€(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致數(shù)學(xué)解題錯(cuò)誤或是解題不全面。
2 易錯(cuò)點(diǎn):忽視集合元素的三性致誤
錯(cuò)因分析:數(shù)學(xué)集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。在解數(shù)學(xué)題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問(wèn)題。
3 易錯(cuò)點(diǎn):四種命題的結(jié)構(gòu)不明致誤
錯(cuò)因分析:如果原命題是“若 A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。
改善初中數(shù)學(xué)做題慢的技巧相關(guān)文章:
★ 做題技巧數(shù)學(xué)初中及注意事項(xiàng)
★ 做題技巧數(shù)學(xué)初中常見(jiàn)方法
★ 初中數(shù)學(xué)學(xué)習(xí)方法總結(jié)與初中數(shù)學(xué)解題方法大全