高中理科數(shù)學(xué)公式知識(shí)點(diǎn)總結(jié)
高中數(shù)學(xué)理科是10本書(shū),文科是9本書(shū),數(shù)學(xué)公式非常多,如果基礎(chǔ)知識(shí)不扎實(shí),平時(shí)做題查閱公式就要浪費(fèi)很多時(shí)間。下面給大家?guī)?lái)一些關(guān)于高中數(shù)學(xué)公式知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。
高中理科數(shù)學(xué)公式知識(shí)點(diǎn)總結(jié)
一.圓的公式
1、圓體積=4/3(pi)(r^3)
2、面積=(pi)(r^2)
3、周長(zhǎng)=2(pi)r
4、圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2【(a,b)是圓心坐標(biāo)】
5、圓的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】
二.橢圓公式
1、橢圓周長(zhǎng)公式:l=2πb+4(a-b)
2、橢圓周長(zhǎng)定理:橢圓的周長(zhǎng)等于該橢圓短半軸,長(zhǎng)為半徑的圓周長(zhǎng)(2πb)加上四倍的該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的差.
3、橢圓面積公式:s=πab
4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(zhǎng)半軸長(zhǎng)(a)與短半軸長(zhǎng)(b)的乘積。
以上橢圓周長(zhǎng)、面積公式中雖然沒(méi)有出現(xiàn)橢圓周率t,但這兩個(gè)公式都是通過(guò)橢圓周率t推導(dǎo)演變而來(lái)。
三.兩角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
四.倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
五.半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
六.和差化積
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
七.等差數(shù)列
1、等差數(shù)列的通項(xiàng)公式為:
an=a1+(n-1)d (1)
2、前n項(xiàng)和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
從(1)式可以看出,an是n的一次數(shù)函(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0.
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng).
且任意兩項(xiàng)am,an的關(guān)系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式.
3、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N-,且m+n=p+q,則有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等.
和=(首項(xiàng)+末項(xiàng))-項(xiàng)數(shù)÷2
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)
末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))/公差+1
八.等比數(shù)列
1、等比數(shù)列的通項(xiàng)公式是:An=A1-q^(n-1)
2、前n項(xiàng)和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意兩項(xiàng)am,an的關(guān)系為an=am·q^(n-m)
3、從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
4、若m,n,p,q∈N-,則有:ap·aq=am·an,
等比中項(xiàng):aq·ap=2ar ar則為ap,aq等比中項(xiàng).
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底數(shù)數(shù)后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列.在這個(gè)意義下,我們說(shuō):一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的.
性質(zhì):①若 m、n、p、q∈N,且m+n=p+q,則am·an=ap-aq;
②在等比數(shù)列中,依次每 k項(xiàng)之和仍成等比數(shù)列.
“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”.
在等比數(shù)列中,首項(xiàng)A1與公比q都不為零.
九.拋物線
1、拋物線:y=ax-+bx+c就是y等于ax的平方加上bx再加上c。
a>0時(shí),拋物線開(kāi)口向上;a<0時(shí)拋物線開(kāi)口向下;c=0時(shí)拋物線經(jīng)過(guò)原點(diǎn);b=0時(shí)拋物線對(duì)稱軸為y軸。
2、頂點(diǎn)式y(tǒng)=a(x+h)-+k就是y等于a乘以(x+h)的平方+k,-h是頂點(diǎn)坐標(biāo)的x,k是頂點(diǎn)坐標(biāo)的y,一般用于求最大值與最小值。
3、拋物線標(biāo)準(zhǔn)方程:y^2=2px它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0)。
4、準(zhǔn)線方程為x=-p/2由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程:y^2=2pxy^2=-2p-^2=2pyx^2=-2py。
高中數(shù)學(xué)背公式有用嗎
有用,不過(guò)想學(xué)好數(shù)學(xué)靠背公式能學(xué)好那是不可能的!關(guān)鍵在于你是否會(huì)學(xué),比如多做題,做什么樣的題呢?那還用說(shuō),高考題,買上2套高考例題,把同類型的題總結(jié)出來(lái),然后反復(fù)看!至于怎么總結(jié),我覺(jué)得只要你不是傻子都會(huì),總結(jié)在乎于讓自己懂得這些東西,怎么去使用,而不是完任務(wù)!那沒(méi)用!
高中數(shù)學(xué)常用公式記憶口訣
《集合與函數(shù)》
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無(wú)對(duì)數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。
兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,y=x是對(duì)稱軸;
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來(lái)函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。
《三角函數(shù)》
三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;
中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對(duì)角,
頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,
變成稅角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。
逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;
1加余弦想余弦,1減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集;
《不等式》
解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無(wú)理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭(zhēng)高下。
直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來(lái)幫助,畫圖建模構(gòu)造法。
《數(shù)列》
等差等比兩數(shù)列,通項(xiàng)公式n項(xiàng)和。兩個(gè)有限求極限,四則運(yùn)算順序換。
數(shù)列問(wèn)題多變幻,方程化歸整體算。數(shù)列求和比較難,錯(cuò)位相消巧轉(zhuǎn)換,
取長(zhǎng)補(bǔ)短高斯法,裂項(xiàng)求和公式算。歸納思想非常好,編個(gè)程序好思考:
一算二看三聯(lián)想,猜測(cè)證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化:
首先驗(yàn)證再假定,從k向著k加1,推論過(guò)程須詳盡,歸納原理來(lái)肯定。
五、《復(fù)數(shù)》
虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部。
對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與x軸正向,所成便是輻角度。
箭桿的長(zhǎng)即是模,常將數(shù)形來(lái)結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。
代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。
一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來(lái)轉(zhuǎn)化。
利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長(zhǎng)短。
三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開(kāi)方極方便。
輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,
兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。
六、《排列、組合、二項(xiàng)式定理》
加法乘法兩原理,貫穿始終的法則。與序無(wú)關(guān)是組合,要求有序是排列。
兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問(wèn)題須轉(zhuǎn)化。
排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。
關(guān)于二項(xiàng)式定理,中國(guó)楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。
七、《立體幾何》
點(diǎn)線面三位一體,柱錐臺(tái)球為代表。距離都從點(diǎn)出發(fā),角度皆為線線成。
垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。
方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對(duì)于解題最關(guān)鍵。
異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問(wèn)題一大片。
八、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。
笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),兩者—一來(lái)對(duì)應(yīng),開(kāi)創(chuàng)幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說(shuō)待定系數(shù)法,實(shí)為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。
四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。
解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)。
高中理科數(shù)學(xué)公式知識(shí)點(diǎn)總結(jié)相關(guān)文章:
★ 高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全
★ 高中數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)歸納
★ 高中數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)
★ 高三數(shù)學(xué)會(huì)考知識(shí)點(diǎn)整理大全
★ 高中數(shù)學(xué)答題技巧100個(gè)絕招知識(shí)點(diǎn)大全
★ 高考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)