怎樣提高數(shù)學題分數(shù)
怎樣提高數(shù)學題分數(shù)
做作業(yè)是學生鞏固知識,訓練方法,發(fā)展思維的重要的不可缺少的學習環(huán)節(jié),它是在老師指導下進行的有目的學習活動。雖然作業(yè)天天做,但效果卻大不同。小編整理了做數(shù)學題的方法的方法,希望能幫助到您。
怎樣做數(shù)學題才能發(fā)揮最大效益
一,溫故知新,把握要領(lǐng)
先把書看透,把老師上課的內(nèi)容回憶一遍再動手做作業(yè)。做作業(yè)前,首先溫故有關(guān)的知識,回顧概念,掌握要求,了解有關(guān)的注意事項,明確學習的目的,把握解題的規(guī)范化要求,然后再動手做作業(yè),就心中有數(shù),練中學,學中練,達到鞏固目的,強化了知識,提高了能力。
但事實上,我們許多同學沒有這個好習慣,拿到題目就做。這樣,首先是速度慢,效率低。另外,由于概念不清,有的概念理解錯誤,做了題目起不到應有的作用,甚至還有反作用,鞏固了錯誤,在相應方面形成了一個頑疾,為以后的高考沖刺埋下后患。
二,明確題意,構(gòu)建思路
題海戰(zhàn)術(shù)的最大特點是以做題的數(shù)量作為標準,并期望以多取勝。由于高考升學的壓力,不少同學不知不覺的掉進題海,拿到題目不假思索,跟著感覺走,時常出現(xiàn)張冠李戴,答非所問等現(xiàn)象,也會出現(xiàn)漏解或者畫蛇添足,勞而無功。長期下去,最大的壞處是形成不嚴謹?shù)乃季S習慣,不利于將來的發(fā)展。
審題是我們解題的前奏工作,不可忽視,在解題前必須審清題意,分析條件和結(jié)論,并且根據(jù)條件和結(jié)論進行聯(lián)想:以前遇到過類似或者部分類似的問題嗎?當時是用什么方法解決的?在這里還有效嗎?等等。通過聯(lián)想構(gòu)建解題思路,設(shè)計解題程序,把握解題要點,為正確快速解題掃清障礙,奠定基礎(chǔ)。
三,限定時間,一氣呵成
常聽同學抱怨,作業(yè)太多,做不完了,有的同學為應付還不惜抄襲作業(yè),影響優(yōu)秀品質(zhì)的形成。了解下來,問題大多是在時間安排上。覺得辛苦的同學,他們的作業(yè)都是在彈性的時間內(nèi)完成,想做就做些,不想做就玩會兒;或者慢條斯理,認為時間還有的是,等會再完成。有一次,作業(yè)量并不大,可是有位同學居然沒完成,他坦誠的說,晚上應該花上半小時就完成,可是當走到電視前時,就自我安慰,看會吧,睡前再做,而到睡前又想起語文老師布置的“周記”明天早自習要交,只有先寫周記,早自習再做吧,早自習外語老師來檢查背誦,所以就誤了事。
但是,大部分同學還是對數(shù)學作業(yè)高度重視,應對自如,甚至還學有余力,額外做了些提高題,所以他們經(jīng)常要求老師多布置些作業(yè)。調(diào)查下來,有兩個是他們的共同特點:一是他們做作業(yè)限時完成,不拖拉,干凈利落,遇到困難,待各項任務基本完成后,再進行鉆研。另一方面,他們做到了心動不如行動。他們拿到問題,常常是立即投入戰(zhàn)斗,而不是去想今天有多少作業(yè),需多少時間,難度是否太大,能不能完成得了等等。他們遇到難題是先能做多少就做多少,能解決到什么程度就解決到什么程度,當解決了問題的部分時,常常會閃出好念頭,悟出問題的解決方案。實際上每解決一點就是向目標*近一步,這就是“吹盡黃沙始得金”的道理。
四,做后反思,提高效益
有人說題海戰(zhàn)術(shù)是臭豆腐,聞的臭,吃的香。題海戰(zhàn)術(shù)既然被人普遍使用,肯定有它存在的道理,不能全盤否定。但是它的效益不高的弊端也是很明顯的。對它進行改進也是情理之中,實踐證明解題后反思是提高效益的有效途徑。
首先要反思題意。前面已經(jīng)介紹了審題的重要性,這里不再詳述。
其次要反思錯誤。要用批評的眼光去看待自己的解題過程,看看思路是否有問題,概念使用是否正確,計算是否有失誤,思考是否周密等等。有時需要從不同的角度去思考,不同的方法去演算更能發(fā)現(xiàn)問題。千萬別把檢查答案當成“自我欣賞”,那么肯定發(fā)現(xiàn)不了錯誤,發(fā)現(xiàn)不了錯誤當然就談不上克服錯誤了。
第三要反思方法。解完題后再思考,由于對這個問題的認識有了一定的高度,所以思考出的新方法常常更為簡捷,巧妙,在很大程度上能激勵我們的信心,即使我們發(fā)現(xiàn)不了巧思妙解,在思考過程中我們回顧了相關(guān)知識,嘗試了許多方法,收獲仍不可小視。
最后還要反思變化。研究性學習已經(jīng)進入高考,提高探究創(chuàng)新能力已經(jīng)刻不容緩。許多經(jīng)典的數(shù)學問題可以進行變化,創(chuàng)設(shè)探究的契機。這些,大家只要利用原來問題的解題思路進行探索,知道他們都是周期函數(shù)。這樣,我們解一題會一類,并訓練了探究,創(chuàng)新能力,較大限度提高了解題的效益。
高中數(shù)學最強“偷分”技能
1.圓錐曲線中最后題往往聯(lián)立起來很復雜導致k算不出,這時你可以取特殊值法強行算出k過程就是先聯(lián)立,后算代爾塔,用下偉達定理,列出題目要求解的表達式,就ok了。
2.選擇題中如果有算錐體體積和表面積的話,直接看選項面積找到差2倍的小的就是答案,體積找到差3倍的小的就是答案,屢試不爽!
3.三角函數(shù)第二題,如求a(cosB+cosC)/(b+c)coA之類的先邊化角然后把第一題算的比如角A等于60度直接假設(shè)B和C都等于60°帶入求解。省時省力!
4.空間幾何證明過程中有一步實在想不出把沒用過的條件直接寫上然后得出想不出的那個結(jié)論即可。如果第一題真心不會做直接寫結(jié)論成立則第二題可以直接用!用常規(guī)法的同學建議先隨便建立個空間坐標系,做錯了還有2分可以得!
5.立體幾何中第二問叫你求余弦值啥的一般都用坐標法!如果求角度則常規(guī)法簡單!
6.選擇題中考線面關(guān)系的可以先從D項看起,前面都是來浪費你時間的
7.選擇題中求取值范圍的直接觀察答案從每個選項中取與其他選項不同的特殊點帶入能成立的就是答案
8.線性規(guī)劃題目直接求交點帶入比較大小即可
9.遇到這樣的選項 A.1/2 B.1 C.3/2 D.5/2 這樣的話答案一般是D因為B可以看作是2/2 前面三個都是出題者湊出來的 如果答案在前面3個的話 D應該是2(4/2)
怎么樣,是不是感覺媽媽再也不擔心你的數(shù)學了。
以上只是一些小技巧,數(shù)學想在不會的情況下再多拿一些分,還需要在大題上多拿分。
大題文科第一題一般是三角函數(shù)題,第一步一般都是需要將三角函數(shù)化簡成標準形式Asin(ωx+φ)+c
接下來按題做就行了,注意二倍角的降冪作用以及輔助角(合一)公式,周期公式,對稱軸、對稱中心、單調(diào)區(qū)間、最大值、最小值都是用整體法求解。求最值時通過自變量的范圍推到里面整體u=ωx+φ 的范圍,然后可以直接畫sinu的圖像,避免畫平移的圖像。
這部分題還有一種就是解三角形的問題,運用正弦定理、余弦定理、面積公式,通常有兩個方向,即角化成邊和邊化成角,得根據(jù)具體問題具體分析哪個方便一些,遇到復雜的題就把未知量列成未知數(shù),根據(jù)定理列方程組,然后解方程組即可。
理科如果考數(shù)列題的話,注意等差、等比數(shù)列通項公式、前n項和公式;證明數(shù)列是等差或等比直接用定義法(后項減前項為常數(shù)/后項比前項為常數(shù)),求數(shù)列通項公式,如為等差或等比直接代公式即可,其它的一般注意類型采用不同的方法(已知Sn求an、已知Sn與an關(guān)系求an(前兩種都是利用an=Sn-Sn-1,注意討論n=1、n>1),累加法、累乘法、構(gòu)造法(所求數(shù)列本身不是等差或等比,需要將所求數(shù)列適當變形構(gòu)造成新數(shù)列l(wèi)amt,通過構(gòu)造一個新數(shù)列使其為等差或等比,便可求其通項,再間接求出所求數(shù)列通項);
數(shù)列的求和第一步要注意通項公式的形式,然后選擇合適的方法(直接法、分組求和法、裂項相消法、錯位相減法、倒序相加法等)進行求解。如有其它問題,注意放縮法證明,還有就是數(shù)列可以看成一個以n為自變量的函數(shù)。
第二題是立體幾何題,證明題注意各種證明類型的方法(判定定理、性質(zhì)定理),注意引輔助線,一般都是對角線、中點、成比例的點、等腰等邊三角形中點等等,理科其實證明不出來直接用向量法也是可以的。計算題主要是體積,注意將字母換位(等體積法);
線面距離用等體積法。理科還有求二面角、線面角等,用建立空間坐標系的方法(向量法)比較簡單,注意各個點的坐標的計算,不要算錯。
第三題是概率與統(tǒng)計題,主要有頻率分布直方圖,注意縱坐標(頻率/組距)。求概率的問題,文科列舉,然后數(shù)數(shù),別數(shù)錯、數(shù)少了啊,概率=滿足條件的個數(shù)/所有可能的個數(shù);
理科用排列組合算數(shù)。獨立性檢驗根據(jù)公式算K方值,別算錯數(shù)了,會查表,用1減查完的概率。回歸分析,根據(jù)數(shù)據(jù)代入公式(公式中各項的意義)即可求出直線方程,注意(x平均,y平均)點滿足直線方程。理科還有隨機變量分布列問題,注意列表時把可能取到的所有值都列出,別少了,然后分別算概率,最后檢查所有概率和是否是1,不是1說明要不你概率算錯了,要不隨機變量數(shù)少了。
第四題是函數(shù)題,第一步別忘了先看下定義域,一般都得求導,求單調(diào)區(qū)間時注意與定義域取交??纯搭}型,將題型轉(zhuǎn)化一下,轉(zhuǎn)化到你學過的內(nèi)容(利用導數(shù)判斷單調(diào)性(含參數(shù)時要利用分類討論思想,一般求導完通分完分子是二次函數(shù)的比較多,討論開口a=0、a<;0、a>;0和后兩種情況下δ<;=0、δ>;0)
求極值(根據(jù)單調(diào)區(qū)間列表或畫圖像簡圖)、求最值(所有的極值點與兩端點值比較)等),典型的有恒成立問題、存在問題(注意與恒成立問題的區(qū)別),不管是什么都要求函數(shù)的最大值或最小值,注意方法以及比較定義域端點值,注意函數(shù)圖象(數(shù)形結(jié)合思想:求方程的根或解、曲線的交點個數(shù))的運用。
證明有關(guān)的問題可以利用證明的各種方法(綜合法、分析法、反證法、理科的數(shù)學歸納法)。多問的時候注意后面的問題一般需要用到前面小問的結(jié)論。抽象的證明問題別光用眼睛在那看,得設(shè)出里面的未知量,通過設(shè)而不求思想證明問題。
第五題是圓錐曲線題,第一問求曲線方程,注意方法(定義法、待定系數(shù)法、直接求軌跡法、反求法、參數(shù)方程法等等)。一定檢查下第一問算的數(shù)對不,要不如果算錯了第二問做出來了也白算了。
第二問有直線與圓錐曲線相交時,記住“聯(lián)立完事用聯(lián)立”,第一步聯(lián)立,根據(jù)韋達定理得出兩根之和、兩根之差、因一般都是交于兩點,注意驗證判別式>;0,設(shè)直線時注意討論斜率是否存在。
第二步也是最關(guān)鍵的就是用聯(lián)立,關(guān)鍵是怎么用聯(lián)立,即如何將題里的條件轉(zhuǎn)化成你剛才聯(lián)立完的x1+x2和x1x2,然后將結(jié)果代入即可,通常涉及的題型有
弦長問題(代入弦長公式)、
定比分點問題(根據(jù)比例關(guān)系建立三點坐標之間的一個關(guān)系式(橫坐標或縱坐標),再根據(jù)根與系數(shù)的關(guān)系建立圓錐曲線上的兩點坐標的兩個關(guān)系式,從這三個關(guān)系式入手解決)、
點對稱問題(利用兩點關(guān)于直線對稱的兩個條件,即這兩點的連線與對稱軸垂直和這兩點的中點在對稱軸上)、
定點問題(直線y=kx+b過定點即找出k與b的關(guān)系,如b=5k+7,然后將b代入到直線方程y=kx+5k+7=k(x+5)+7即可找出定點(-5,7))、
定值問題(基本思想是函數(shù)思想,將要證明或要求解的量表示為某個合適變量(斜率、截距或坐標)的函數(shù),通過適當化簡,消去變量即得定值。)、
最值或范圍問題(基本思想還是函數(shù)思想,將要求解的量表示為某個合適變量(斜率、截距或坐標)的函數(shù),利用函數(shù)求值域的方法(首先要求變量的范圍即定義域—別忘了delt>;0,然后運用求值域的各種方法—直接法、換元法、圖像法、導數(shù)法、均值不等式法(注意驗證“=”)等)求出最值(最大、最小),即范圍也求出來了)。
抽象的證明問題別光用眼睛在那看,得設(shè)出里面的未知量,通過設(shè)而不求思想證明問題。
怎樣提高數(shù)學題分數(shù)相關(guān)文章:
3.如何提高數(shù)學做題的速度和準確度?這4個技巧要知道