特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦>學習方法>各學科學習方法>數學學習方法>

高考數學必考知識點總結

時間: 舒淇4599 分享

很多學生在高考復習數學知識時,因為之前沒有做過系統(tǒng)的總結,導致復習時整體效率不高。下面小編為大家?guī)砀呖紨祵W必考知識點總結,希望對您有所幫助!

高考數學必考知識點總結

直線、平面、簡單多面體

1.計算異面直線所成角的關鍵是平移(補形)轉化為兩直線的夾角計算

2.計算直線與平面所成的角關鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運用等積法求點到直線的距離,后虛擬直角三角形求解.注:一斜線與平面上以斜足為頂點的角的兩邊所成角相等斜線在平面上射影為角的平分線.

3.空間平行垂直關系的證明,主要依據相關定義、公理、定理和空間向量進行,請重視線面平行關系、線面垂直關系(三垂線定理及其逆定理)的橋梁作用.注意:書寫證明過程需規(guī)范.

4.直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關于側棱、側面、對角面、平行于底的截面的幾何體性質.

如長方體中:對角線長,棱長總和為,全(表)面積為,(結合可得關于他們的等量關系,結合基本不等式還可建立關于他們的不等關系式),

如三棱錐中:側棱長相等(側棱與底面所成角相等)頂點在底上射影為底面外心,側棱兩兩垂直(兩對對棱垂直)頂點在底上射影為底面垂心,斜高長相等(側面與底面所成相等)且頂點在底上在底面內頂點在底上射影為底面內心.

5.求幾何體體積的常規(guī)方法是:公式法、割補法、等積(轉換)法、比例(性質轉換)法等.注意:補形:三棱錐三棱柱平行六面體

6.多面體是由若干個多邊形圍成的幾何體.棱柱和棱錐是特殊的多面體.

正多面體的每個面都是相同邊數的正多邊形,以每個頂點為其一端都有相同數目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體.

7.球體積公式。球表面積公式,是兩個關于球的幾何度量公式.它們都是球半徑及的函數.

高考數學備考知識點

任一x=A,x=B,記做AB

AB,BAA=B

AB={x|x=A,且x=B}

AB={x|x=A,或x=B}

Card(AB)=card(A)+card(B)—card(AB)

(1)命題

原命題若p則q

逆命題若q則p

否命題若p則q

逆否命題若q,則p

(2)AB,A是B成立的充分條件

BA,A是B成立的必要條件

AB,A是B成立的充要條件

1、集合元素具有

①確定性;

②互異性;

③無序性

2、集合表示方法

①列舉法;

②描述法;

③韋恩圖;

④數軸法

(3)集合的運算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性質

n元集合的字集數:2n

真子集數:2n—1;

非空真子集數:2n—2

高考數學重要知識點

表達式:(a+b)(a-b)=a^2-b^2,兩個數的和與這兩個數差的積,等于這兩個數的平方差,這個公式就叫做乘法的平方差公式

公式運用

可用于某些分母含有根號的分式:

1/(3-4倍根號2)化簡:

1×(3+4倍根號2)/(3-4倍根號2)^2;=(3+4倍根號2)/(9-32)=(3+4倍根號2)/-23

[解方程]

x^2-y^2=1991

[思路分析]

利用平方差公式求解

[解題過程]

x^2-y^2=1991

(x+y)(x-y)=1991

因為1991可以分成1×1991,11×181

所以如果x+y=1991,x-y=1,解得x=996,y=995

如果x+y=181,x-y=11,x=96,y=85同時也可以是負數

所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995

或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85

有時應注意加減的過程。

高考數學復習知識點

直線、平面、簡單多面體

1.計算異面直線所成角的關鍵是平移(補形)轉化為兩直線的夾角計算

2.計算直線與平面所成的角關鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運用等積法求點到直線的距離,后虛擬直角三角形求解.注:一斜線與平面上以斜足為頂點的角的兩邊所成角相等斜線在平面上射影為角的平分線.

3.空間平行垂直關系的證明,主要依據相關定義、公理、定理和空間向量進行,請重視線面平行關系、線面垂直關系(三垂線定理及其逆定理)的橋梁作用.注意:書寫證明過程需規(guī)范.

4.直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關于側棱、側面、對角面、平行于底的截面的幾何體性質.

如長方體中:對角線長,棱長總和為,全(表)面積為,(結合可得關于他們的等量關系,結合基本不等式還可建立關于他們的不等關系式),

如三棱錐中:側棱長相等(側棱與底面所成角相等)頂點在底上射影為底面外心,側棱兩兩垂直(兩對對棱垂直)頂點在底上射影為底面垂心,斜高長相等(側面與底面所成相等)且頂點在底上在底面內頂點在底上射影為底面內心.

5.求幾何體體積的常規(guī)方法是:公式法、割補法、等積(轉換)法、比例(性質轉換)法等.注意:補形:三棱錐三棱柱平行六面體

6.多面體是由若干個多邊形圍成的幾何體.棱柱和棱錐是特殊的多面體.

正多面體的每個面都是相同邊數的正多邊形,以每個頂點為其一端都有相同數目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體.

7.球體積公式。球表面積公式,是兩個關于球的幾何度量公式.它們都是球半徑及的函數.

1614572