數(shù)學(xué)知識點高中大全
數(shù)學(xué)是人類對事物的抽象結(jié)構(gòu)與模式進行嚴(yán)格描述、推導(dǎo)的一種通用手段,可以應(yīng)用于現(xiàn)實世界的任何問題,所有的數(shù)學(xué)對象本質(zhì)上都是人為定義的。下面小編為大家?guī)頂?shù)學(xué)知識點高中大全,希望大家喜歡!
數(shù)學(xué)知識點高中
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動點的軌跡方程的基本步驟。
1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);
2、寫出點M的集合;
3、列出方程=0;
4、化簡方程為最簡形式;
5、檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3、相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
4、參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動點軌跡方程的一般步驟:
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點——設(shè)軌跡上的任一點P(x,y);
③列式——列出動點p所滿足的關(guān)系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
高中數(shù)學(xué)復(fù)習(xí)計劃
(一)復(fù)習(xí)目標(biāo)
(1)第21章22章“二次根式”“一元二次方程”主要是計算,教師提前先把概念、性質(zhì)、方法綜合復(fù)習(xí),加入適當(dāng)?shù)木毩?xí),特別是“一元二次方程”的三個重要題型:①一元二次方程的定義:②一元二次方程的解法;③一元二次方程的應(yīng)用。在課堂上要逐一對這些題型歸納講解,多強調(diào)解題方法的針對性。最后針對平時練習(xí)中存在的問題,查漏補缺。
(2)第23章是幾何部分。這章的重點是旋轉(zhuǎn)的性質(zhì)及其生活中的應(yīng)用。所以記住性質(zhì)是關(guān)鍵,學(xué)會應(yīng)用是重點。要學(xué)會生活中的旋轉(zhuǎn)是隨時都可以轉(zhuǎn)化成數(shù)學(xué)問題,不同圖形之間的區(qū)別和聯(lián)系要非常熟悉,形成一個有機整體。對常見的旋轉(zhuǎn)題要多練多總結(jié)。
(3)第24章主要是“圓”的教學(xué),對這章的考試題型中實際問題背景學(xué)生可能不一定熟悉,所以要以與課本同步的題型為主,要熟記圓的垂徑定理,讓學(xué)生積極動手操作直角三角形與垂徑定理之間的聯(lián)系,并得出結(jié)論,課堂上教師講評,盡量是精講多練,該動手的要多動手,盡可能的讓學(xué)生自己總結(jié)出圓與多種幾何圖形結(jié)合的實際應(yīng)用問題的方法。
(二)復(fù)習(xí)方法
(1)強化訓(xùn)練
這個學(xué)期計算類和證明類的題目較多,在復(fù)習(xí)中要加強這方面的訓(xùn)練。特別是二次函數(shù),在復(fù)習(xí)過程中要分類型練習(xí),重點是解題方法的正確選擇同時使學(xué)生養(yǎng)成檢查計算結(jié)果的習(xí)慣。還有幾何證明題,要通過針對性練習(xí)力爭達到少失分,達到證明簡練又嚴(yán)謹?shù)男Ч?/p>
(2)加強管理嚴(yán)格要求
根據(jù)每個學(xué)生自身情況、學(xué)習(xí)水平嚴(yán)格要求,對應(yīng)知應(yīng)會的內(nèi)容要反復(fù)講解、練習(xí),必須做到學(xué)一點會一點,對接受能力差的學(xué)生課后要加強輔導(dǎo),及時糾正出現(xiàn)的錯誤,平時多小測多檢查。對能力較強的學(xué)生要引導(dǎo)他們多做課外習(xí)題,適當(dāng)提高做題難度,我校各班級有針對性的選擇資料,要求學(xué)生能完成,教師要批改。
(3)加強證明題的訓(xùn)練
通過近三年的學(xué)習(xí),我發(fā)現(xiàn)還有部分學(xué)生對證明題掌握不牢,不會找合適的分析方法,部分學(xué)生看不懂題意,沒有思路。在今后的復(fù)習(xí)中我準(zhǔn)備拿出一定的時間來專項練習(xí)證明題,引導(dǎo)學(xué)生如何弄懂題意、怎樣分析、怎樣寫證明過程。力爭讓學(xué)生把各種類型題做全并抓住其特點。
(4)加強學(xué)困生的輔導(dǎo)
制定詳細的復(fù)習(xí)計劃,對他們要多表揚多鼓勵,調(diào)動他們學(xué)習(xí)的積極性,利用課余時間對他們進行輔導(dǎo),輔導(dǎo)時要有耐心,要心平氣和,對不會的知識要多講幾遍,不怕麻煩,直至弄懂弄會,同時要配合班主任和家長搞好對學(xué)生的家庭輔導(dǎo)工作。
如何學(xué)好高中數(shù)學(xué)
1.突破基礎(chǔ),基本的公式定理。除了在校學(xué)習(xí),周末當(dāng)家最好有老師輔導(dǎo),針對講解。
每周自己把公式默寫一遍!
2.對高考必考的六個題型三角函數(shù),數(shù)列,概率與統(tǒng)計,導(dǎo)數(shù),解析幾何,解不等式與極坐標(biāo)。進行刷題訓(xùn)練!一個題型給自己定個目標(biāo)刷夠五十道!并認真總結(jié)!要利用好高二的暑假!
3.做到以上兩點,基本上對數(shù)學(xué)沒有恐懼感了。平時自己在校學(xué)習(xí),嚴(yán)格跟著老師走,學(xué)有余力,每天至少做5道數(shù)學(xué)題!自己刷資料!
總之,要樹立一種不打倒敵人不放手的信念,并按老師說的行動起來!數(shù)學(xué)七八十分保底,一百二分為目標(biāo),是可以的!