浙教版初三數(shù)學(xué)知識(shí)點(diǎn)
天才就是勤奮曾經(jīng)有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學(xué)習(xí),就算是天才,也是需要不斷練習(xí)與記憶的。下面是小編給大家整理的一些初三數(shù)學(xué)知識(shí)點(diǎn),希望對(duì)大家有所幫助。
九年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
知識(shí)點(diǎn)1.概念
把形狀相同的圖形叫做相似圖形。(即對(duì)應(yīng)角相等、對(duì)應(yīng)邊的比也相等的圖形)
解讀:(1)兩個(gè)圖形相似,其中一個(gè)圖形可以看做由另一個(gè)圖形放大或縮小得到.
(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.
(3)判斷兩個(gè)圖形是否相似,就是看這兩個(gè)圖形是不是形狀相同,與其他因素?zé)o關(guān).
知識(shí)點(diǎn)2.比例線段
對(duì)于四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那么這四條線段叫做成比例線段,簡稱比例線段.
知識(shí)點(diǎn)3.相似多邊形的性質(zhì)
相似多邊形的性質(zhì):相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等.
解讀:(1)正確理解相似多邊形的定義,明確“對(duì)應(yīng)”關(guān)系.
(2)明確相似多邊形的“對(duì)應(yīng)”來自于書寫,且要明確相似比具有順序性.
知識(shí)點(diǎn)4.相似三角形的概念
對(duì)應(yīng)角相等,對(duì)應(yīng)邊之比相等的三角形叫做相似三角形.
解讀:(1)相似三角形是相似多邊形中的一種;
(2)應(yīng)結(jié)合相似多邊形的性質(zhì)來理解相似三角形;
(3)相似三角形應(yīng)滿足形狀一樣,但大小可以不同;
(4)相似用“∽”表示,讀作“相似于”;
(5)相似三角形的對(duì)應(yīng)邊之比叫做相似比.
知識(shí)點(diǎn)5.相似三角的判定方法
(1)定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似;
(2)平行于三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構(gòu)成的三角形與原三角形相似.
(3)如果一個(gè)三角形的兩個(gè)角分別與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似.
(4)如果一個(gè)三角的兩條邊與另一個(gè)三角形的兩條邊對(duì)應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形相似.
(5)如果一個(gè)三角形的三條邊分別與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似.
(6)直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形都相似.
知識(shí)點(diǎn)6.相似三角形的性質(zhì)
(1)對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等;
(2)對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比,對(duì)應(yīng)角平分線的比都等于相似比;
(3)相似三角形周長之比等于相似比;面積之比等于相似比的平方.
(4)射影定理
初三下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
半徑與弦長計(jì)算,弦心距來中間站。圓上若有一切線,切點(diǎn)圓心半徑連。
切線長度的計(jì)算,勾股定理最方便。要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦?;∮兄悬c(diǎn)圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊切線弦,同弧對(duì)角等找完。
要想作個(gè)外接圓,各邊作出中垂線。還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓。
如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。
若是添上連心線,切點(diǎn)肯定在上面。要作等角添個(gè)圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。
基本作圖很關(guān)鍵,平時(shí)掌握要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。
切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會(huì)減。
虛心勤學(xué)加苦練,成績上升成直線。
重視構(gòu)建知識(shí)網(wǎng)絡(luò)——宏觀把握數(shù)學(xué)框架
要學(xué)會(huì)構(gòu)建知識(shí)網(wǎng)絡(luò),數(shù)學(xué)概念是構(gòu)建知識(shí)網(wǎng)絡(luò)的出發(fā)點(diǎn),也是數(shù)學(xué)中考[微博]考查的重點(diǎn)。因此,我們要掌握好代數(shù)中的數(shù)、式、不等式、方程、函數(shù)、三角比、統(tǒng)計(jì)和幾何中的平行線、三角形、四邊形、圓的概念、分類、定義、性質(zhì)和判定,并會(huì)應(yīng)用這些概念去解決一些問題。
重視夯實(shí)數(shù)學(xué)雙基——微觀掌握知識(shí)技能
在復(fù)習(xí)過程中夯實(shí)數(shù)學(xué)基礎(chǔ),要注意知識(shí)的不斷深化,重視強(qiáng)化題組訓(xùn)練——感悟數(shù)學(xué)思想方法
除了做基礎(chǔ)訓(xùn)練題、平面幾何每日一題外,還可以做一些綜合題,并且養(yǎng)成解題后反思的習(xí)慣。反思自己的思維過程,反思知識(shí)點(diǎn)和解題技巧,反思多種解法的優(yōu)劣,反思各種方法的縱橫聯(lián)系。而總結(jié)出它所用到的數(shù)學(xué)思想方法,并把思想方法相近的題目編成一組,不斷提煉、不斷深化,做到舉一反三、觸類旁通。逐步學(xué)會(huì)觀察、試驗(yàn)、分析、猜想、歸納、類比、聯(lián)想等思想方法,主動(dòng)地發(fā)現(xiàn)問題和提出問題。
重視建立“病例檔案”——做到萬無一失
準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時(shí)犯的錯(cuò)誤記下來,找出“病因”開出“處方”,并且經(jīng)常地拿出來看看、想想錯(cuò)在哪里,為什么會(huì)錯(cuò),怎么改正,這樣到中考時(shí)你的數(shù)學(xué)就沒有什么“病例”了。我們要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,積累解題經(jīng)驗(yàn)、總結(jié)解題思路、形成解題思想、催生解題靈感、掌握學(xué)習(xí)方法。
重視常用公式技巧——做到思維敏捷準(zhǔn)確
對(duì)經(jīng)常使用的數(shù)學(xué)公式要理解來龍去脈,要進(jìn)一步了解其推理過程,并對(duì)推導(dǎo)過程中產(chǎn)生的一些可能變化自行探究。對(duì)今后繼續(xù)學(xué)習(xí)所必須的知識(shí)和技能,對(duì)生活實(shí)際經(jīng)常用到的常識(shí),也要進(jìn)行必要的訓(xùn)練。例如:1-20的平方數(shù);簡單的勾股數(shù);正三角形的面積公式以及高和邊長的關(guān)系;30°、45°直角三角形三邊的關(guān)系……這樣做,一定能更好地掌握公式并勝過做大量習(xí)題,而且往往會(huì)有意想不到的效果。
重視中考動(dòng)向要求——勤練解題規(guī)范速度
要把握好目前的中考動(dòng)向,特別是近年來上海的中考越來越注重解題過程的規(guī)范和解答過程的完整。在此特別指出的是,有很多學(xué)生認(rèn)為只要解出題目的答案就萬事大吉了,其實(shí)只要是有過程的解答題,過程分比最后的答案要重要得多,不要會(huì)做而不得分。
初三數(shù)學(xué)知識(shí)點(diǎn)浙教版相關(guān)文章:
★ 最新初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全
★ 初三數(shù)學(xué)知識(shí)點(diǎn)歸納人教版
★ 浙教版高一數(shù)學(xué)知識(shí)點(diǎn)
★ 人教版九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 人教版初三數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)資料備戰(zhàn)中考
★ 浙教版七年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)提綱