蘇科版初三數(shù)學(xué)重要知識(shí)點(diǎn)
天才就是勤奮曾經(jīng)有人這樣說(shuō)過(guò)。如果這話不完全正確,那至少在很大程度上是正確的。學(xué)習(xí),就算是天才,也是需要不斷練習(xí)與記憶的。下面是小編給大家整理的一些初三數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
九年級(jí)數(shù)學(xué)知識(shí)點(diǎn)
函數(shù)的圖像與一元二次方程
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同
當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
初三年級(jí)數(shù)學(xué)知識(shí)點(diǎn)
旋轉(zhuǎn)
一.知識(shí)框架
二.知識(shí)概念
1.旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)圖形按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn)。這個(gè)定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點(diǎn)在平面上繞著某個(gè)固定點(diǎn)旋轉(zhuǎn)固定角度的位置移動(dòng),其中對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)線段的長(zhǎng)度、對(duì)應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒(méi)有改變。)
2.旋轉(zhuǎn)對(duì)稱中心:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。
3.中心對(duì)稱圖形與中心對(duì)稱:
中心對(duì)稱圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說(shuō),這個(gè)圖形成中心對(duì)稱圖形。
中心對(duì)稱:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說(shuō),這兩個(gè)圖形成中心對(duì)稱。
4.中心對(duì)稱的性質(zhì):
關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分。
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或者在同一直線上)且相等。
本章內(nèi)容通過(guò)讓學(xué)生經(jīng)歷觀察、操作等過(guò)程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進(jìn)一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識(shí),在實(shí)際問(wèn)題中體驗(yàn)數(shù)學(xué)的快樂(lè),激發(fā)對(duì)學(xué)習(xí)學(xué)習(xí)。
重視構(gòu)建知識(shí)網(wǎng)絡(luò)——宏觀把握數(shù)學(xué)框架
要學(xué)會(huì)構(gòu)建知識(shí)網(wǎng)絡(luò),數(shù)學(xué)概念是構(gòu)建知識(shí)網(wǎng)絡(luò)的出發(fā)點(diǎn),也是數(shù)學(xué)中考[微博]考查的重點(diǎn)。因此,我們要掌握好代數(shù)中的數(shù)、式、不等式、方程、函數(shù)、三角比、統(tǒng)計(jì)和幾何中的平行線、三角形、四邊形、圓的概念、分類、定義、性質(zhì)和判定,并會(huì)應(yīng)用這些概念去解決一些問(wèn)題。
重視夯實(shí)數(shù)學(xué)雙基——微觀掌握知識(shí)技能
在復(fù)習(xí)過(guò)程中夯實(shí)數(shù)學(xué)基礎(chǔ),要注意知識(shí)的不斷深化,重視強(qiáng)化題組訓(xùn)練——感悟數(shù)學(xué)思想方法
除了做基礎(chǔ)訓(xùn)練題、平面幾何每日一題外,還可以做一些綜合題,并且養(yǎng)成解題后反思的習(xí)慣。反思自己的思維過(guò)程,反思知識(shí)點(diǎn)和解題技巧,反思多種解法的優(yōu)劣,反思各種方法的縱橫聯(lián)系。而總結(jié)出它所用到的數(shù)學(xué)思想方法,并把思想方法相近的題目編成一組,不斷提煉、不斷深化,做到舉一反三、觸類旁通。逐步學(xué)會(huì)觀察、試驗(yàn)、分析、猜想、歸納、類比、聯(lián)想等思想方法,主動(dòng)地發(fā)現(xiàn)問(wèn)題和提出問(wèn)題。
重視建立“病例檔案”——做到萬(wàn)無(wú)一失
準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時(shí)犯的錯(cuò)誤記下來(lái),找出“病因”開出“處方”,并且經(jīng)常地拿出來(lái)看看、想想錯(cuò)在哪里,為什么會(huì)錯(cuò),怎么改正,這樣到中考時(shí)你的數(shù)學(xué)就沒(méi)有什么“病例”了。我們要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,積累解題經(jīng)驗(yàn)、總結(jié)解題思路、形成解題思想、催生解題靈感、掌握學(xué)習(xí)方法。
重視常用公式技巧——做到思維敏捷準(zhǔn)確
對(duì)經(jīng)常使用的數(shù)學(xué)公式要理解來(lái)龍去脈,要進(jìn)一步了解其推理過(guò)程,并對(duì)推導(dǎo)過(guò)程中產(chǎn)生的一些可能變化自行探究。對(duì)今后繼續(xù)學(xué)習(xí)所必須的知識(shí)和技能,對(duì)生活實(shí)際經(jīng)常用到的常識(shí),也要進(jìn)行必要的訓(xùn)練。例如:1-20的平方數(shù);簡(jiǎn)單的勾股數(shù);正三角形的面積公式以及高和邊長(zhǎng)的關(guān)系;30°、45°直角三角形三邊的關(guān)系……這樣做,一定能更好地掌握公式并勝過(guò)做大量習(xí)題,而且往往會(huì)有意想不到的效果。
重視中考動(dòng)向要求——勤練解題規(guī)范速度
要把握好目前的中考動(dòng)向,特別是近年來(lái)上海的中考越來(lái)越注重解題過(guò)程的規(guī)范和解答過(guò)程的完整。在此特別指出的是,有很多學(xué)生認(rèn)為只要解出題目的答案就萬(wàn)事大吉了,其實(shí)只要是有過(guò)程的解答題,過(guò)程分比最后的答案要重要得多,不要會(huì)做而不得分。
蘇科版初三數(shù)學(xué)重要知識(shí)點(diǎn)相關(guān)文章:
★ 初三數(shù)學(xué)重要知識(shí)點(diǎn)
★ 九年級(jí)數(shù)學(xué)重要知識(shí)點(diǎn)
★ 初三數(shù)學(xué)知識(shí)點(diǎn)整理歸納
★ 九年級(jí)新學(xué)期數(shù)學(xué)知識(shí)點(diǎn)蘇教版
★ 初三數(shù)學(xué)上冊(cè)的知識(shí)點(diǎn)
★ 蘇教版初中三年級(jí)數(shù)學(xué)復(fù)習(xí)計(jì)劃