蘇教版九年級數(shù)學知識點歸納
課堂臨時報佛腳,不如課前預(yù)習好。其實任何學科都是一樣的,學習任何一門學科,勤奮都是最好的學習方法,沒有之一,書山有路勤為徑。下面是小編給大家整理的九年級數(shù)學知識點,希望對大家有所幫助。
初三數(shù)學上冊知識點歸納
二元一次方程組
1、定義:含有兩個未知數(shù),并且未知項的次數(shù)是1的整式方程叫做二元一次方程。
2、二元一次方程組的解法
(1)代入法
由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。
(2)因式分解法
在二元二次方程組中,至少有一個方程可以分解時,可采用因式分解法通過消元降次來解。
(3)配方法
將一個式子,或一個式子的某一部分通過恒等變形化為完全平方式或幾個完全平方式的和。
(4)韋達定理法
通過韋達定理的逆定理,可以利用兩數(shù)的和積關(guān)系構(gòu)造一元二次方程。
(5)消常數(shù)項法
當方程組的兩個方程都缺一次項時,可用消去常數(shù)項的方法解。
解一元二次方程
解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。
1、直接開平方法:
用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).
直接開平方法就是平方的逆運算.通常用根號表示其運算結(jié)果.
2、配方法
通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。
(1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
(2)系數(shù)化1:將二次項系數(shù)化為1
(3)移項:將常數(shù)項移到等號右側(cè)
(4)配方:等號左右兩邊同時加上一次項系數(shù)一半的平方
(5)變形:將等號左邊的代數(shù)式寫成完全平方形式
(6)開方:左右同時開平方
(7)求解:整理即可得到原方程的根
九年級下冊數(shù)學知識點歸納
一、平行線分線段成比例定理及其推論:
1.定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例。
2.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例。
3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條線段平行于三角形的第三邊。
二、相似預(yù)備定理:
平行于三角形的一邊,并且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對應(yīng)成比例。
三、相似三角形:
1.定義:對應(yīng)角相等,對應(yīng)邊成比例的三角形叫做相似三角形。
2.性質(zhì):(1)相似三角形的對應(yīng)角相等;
(2)相似三角形的對應(yīng)線段(邊、高、中線、角平分線)成比例;
(3)相似三角形的周長比等于相似比,面積比等于相似比的平方。
說明:①等高三角形的面積比等于底之比,等底三角形的面積比等于高之比;②要注意兩個圖形元素的對應(yīng)。
3.判定定理:
(1)兩角對應(yīng)相等,兩三角形相似;
(2)兩邊對應(yīng)成比例,且夾角相等,兩三角形相似;
(3)三邊對應(yīng)成比例,兩三角形相似;
(4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角對應(yīng)成比例,那么這兩個直角三角形相似。
初三數(shù)學復習資料
因式分解的方法
1.十字相乘法
(1)把二次項系數(shù)和常數(shù)項分別分解因數(shù);
(2)嘗試十字圖,使經(jīng)過十字交叉線相乘后所得的數(shù)的和為一次項系數(shù);
(3)確定合適的十字圖并寫出因式分解的結(jié)果;
(4)檢驗。
2.提公因式法
(1)找出公因式;
(2)提公因式并確定另一個因式;
①找公因式可按照確定公因式的方法先確定系數(shù)再確定字母;
②提公因式并確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式后剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式;
③提完公因式后,另一因式的項數(shù)與原多項式的項數(shù)相同。
3.待定系數(shù)法
(1)確定所求問題含待定系數(shù)的一般解析式;
(2)根據(jù)恒等條件,列出一組含待定系數(shù)的方程;
(3)解方程或消去待定系數(shù),從而使問題得到解決。
蘇教版九年級數(shù)學知識點歸納相關(guān)文章: