初中數(shù)學(xué)解題方法大匯總
初中數(shù)學(xué)解題方法大匯總
中考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識(shí)外,還十分重視對(duì)數(shù)學(xué)方法的考查,如配方法,待定系數(shù)法、判別式法等操作性較強(qiáng)的數(shù)學(xué)方法。在復(fù)習(xí)時(shí)應(yīng)對(duì)每一種方法的,它所適應(yīng)的題型,包括解題步驟都應(yīng)該熟練掌握。接下來(lái)小編為大家整理了初三數(shù)學(xué)學(xué)習(xí)相關(guān)內(nèi)容,一起來(lái)看看吧!
初中數(shù)學(xué)解題方法大匯總
一、選擇題的解法
1、直接法:根據(jù)選擇題的題設(shè)條件,通過(guò)計(jì)算、推理或判斷,最后得到題目的所求。
2、特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);
在解這類(lèi)選擇題時(shí),可以考慮從取值范圍內(nèi)選取某幾個(gè)特殊值,代入原命題進(jìn)行驗(yàn)證,然后淘汰錯(cuò)誤的,保留正確的。
3、淘汰法:把題目所給的四個(gè)結(jié)論逐一代回原題的題干中進(jìn)行驗(yàn)證,把錯(cuò)誤的淘汰掉,直至找到正確的答案。
4、逐步淘汰法:如果我們?cè)谟?jì)算或推導(dǎo)的過(guò)程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略;每走一步都與四個(gè)結(jié)論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個(gè)錯(cuò)誤的結(jié)論就被全部淘汰掉了。
5、數(shù)形結(jié)合法:根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解題思路,使問(wèn)題得到解決。
二、常用的數(shù)學(xué)思想方法
1、數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解題思路,使問(wèn)題得到解決。
2、聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡(jiǎn)。
如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。
3、分類(lèi)討論的思想:在數(shù)學(xué)中,我們常常需要根據(jù)研究對(duì)象性質(zhì)的差異,分各種不同情況予以考查;這種分類(lèi)思考的方法,是一種重要的數(shù)學(xué)思想方法,同時(shí)也是一種重要的解題策略。
4、待定系數(shù)法:當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母的值就可以了。為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì)得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問(wèn)題得到解決。
5、配方法:就是把一個(gè)代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。
配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問(wèn)題,都有重要的作用。
6、換元法:在解題過(guò)程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問(wèn)題的一種方法。
換元法可以把一個(gè)較為復(fù)雜的式子化簡(jiǎn),把問(wèn)題歸結(jié)為比原來(lái)更為基本的問(wèn)題,從而達(dá)到化繁為簡(jiǎn),化難為易的目的。
7、分析法:在研究或證明一個(gè)命題時(shí),由結(jié)論向已知條件追溯,既從結(jié)論開(kāi)始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過(guò)程通常稱(chēng)為“執(zhí)果尋因”
8、綜合法:在研究或證明命題時(shí),如果推理的方向是從已知條件開(kāi)始,逐步推導(dǎo)得到結(jié)論,這種思維過(guò)程通常稱(chēng)為“由因?qū)Ч?/p>
9、演繹法:由一般到特殊的推理方法。
10、歸納法:由一般到特殊的推理方法。
11、類(lèi)比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個(gè)或兩類(lèi)事物之間;根據(jù)它們的某些屬性相同或相似,推出它們?cè)谄渌麑傩苑矫嬉部赡芟嗤蛳嗨频耐评矸椒ā?/p>
類(lèi)比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函數(shù)、方程、不等式
解函數(shù)、方程、不等式相關(guān)問(wèn)題的常用數(shù)學(xué)思想方法有:
?、艛?shù)形結(jié)合的思想方法;
?、拼ㄏ禂?shù)法;
?、桥浞椒?
?、嚷?lián)系與轉(zhuǎn)化的思想;
⑸圖像的平移變換;
四、證明角的相等
1、對(duì)頂角相等。
2、角(或同角)的補(bǔ)角相等或余角相等。
3、兩直線平行,同位角相等、內(nèi)錯(cuò)角相等。
4、凡直角都相等。
5、角平分線分得的兩個(gè)角相等。
6、同一個(gè)三角形中,等邊對(duì)等角。
7、等腰三角形中,底邊上的高(或中線)平分頂角。
8、平行四邊形的對(duì)角相等。
9、菱形的每一條對(duì)角線平分一組對(duì)角。
10、等腰梯形同一底上的兩個(gè)角相等。
11、關(guān)系定理:同圓或等圓中,若有兩條弧(或弦、或弦心距)相等,則它們所對(duì)的圓心角相等。
12、圓內(nèi)接四邊形的任何一個(gè)外角都等于它的內(nèi)對(duì)角。
13、同弧或等弧所對(duì)的圓周角相等。
14、弦切角等于它所夾的弧對(duì)的圓周角。
15、同圓或等圓中,如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等。
16、全等三角形的對(duì)應(yīng)角相等。
17、相似三角形的對(duì)應(yīng)角相等。
18、利用等量代換。
19、利用代數(shù)或三角計(jì)算出角的度數(shù)相等
20、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,并且這一點(diǎn)和圓心的連線平分兩條切線的夾角。
五、證明直線的平行或垂直
1、證明兩條直線平行的主要依據(jù)和方法:
?、?定義、在同一平面內(nèi)不相交的兩條直線平行。
?、破叫卸ɡ恚簝蓷l直線都和第三條直線平行,這兩條直線也互相平行。
?、瞧叫芯€的判定:同位角相等(內(nèi)錯(cuò)角或同旁內(nèi)角),兩直線平行。
⑷平行四邊形的對(duì)邊平行。
⑸梯形的兩底平行。
?、嗜切?或梯形)的中位線平行與第三邊(或兩底)
?、艘粭l直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,則這條直線平行于三角形的第三邊。
2、證明兩條直線垂直的主要依據(jù)和方法:
⑴兩條直線相交所成的四個(gè)角中,有一個(gè)是直角時(shí),這兩條直線互相垂直。
?、浦苯侨切蔚膬芍苯沁吇ハ啻怪薄?/p>
?、侨切蔚膬蓚€(gè)銳角互余,則第三個(gè)內(nèi)角為直角。
?、热切我贿叺闹芯€等于這邊的一半,則這個(gè)三角形為直角三角形。
?、扇切我贿叺钠椒降扔谄渌麅蛇叺钠椒胶停瑒t這邊所對(duì)的內(nèi)角為直角。
⑹三角形(或多邊形)一邊上的高垂直于這邊。
⑺等腰三角形的頂角平分線(或底邊上的中線)垂直于底邊。
⑻矩形的兩鄰邊互相垂直。
⑼菱形的對(duì)角線互相垂直。
⑽平分弦(非直徑)的直徑垂直于這條弦,或平分弦所對(duì)的弧的直徑垂直于這條弦。
⑾半圓或直徑所對(duì)的圓周角是直角。
⑿圓的切線垂直于過(guò)切點(diǎn)的半徑。
⒀相交兩圓的連心線垂直于兩圓的公共弦。
六、證明線段的比例式或等積式的主要依據(jù)和方法:
1、比例線段的定義。
2、平行線分線段成比例定理及推論。
3、平行于三角形的一邊,并且和其他兩邊(或兩邊的延長(zhǎng)線)相交的直線,所截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例。
4、過(guò)分點(diǎn)作平行線;
5、相似三角形的對(duì)應(yīng)高成比例,對(duì)應(yīng)中線的比和對(duì)應(yīng)角平分線的比都等于相似比。
6、相似三角形的周長(zhǎng)的比等于相似比。
7、相似三角形的面積的比等于相似比的平方。
8、相似三角形的對(duì)應(yīng)邊成比例。
9、通過(guò)比例的性質(zhì)推導(dǎo)。
10、用代數(shù)、三角方法進(jìn)行計(jì)算。
11、借助等比或等線段代換。
七、幾何作圖
1、掌握最基本的五種尺規(guī)作圖
?、抛饕粭l線段等于已知線段;
⑵作一個(gè)角等于已知角;
?、瞧椒忠阎?
⑷經(jīng)過(guò)一點(diǎn)作已知直線的垂線;
?、勺骶€段的垂直平分線;
2、掌握課本中各章要求的作圖題
?、鸥鶕?jù)條件作任意的三角形、等腰三角形、直角三角形;
⑵根據(jù)給出條件作一般四邊形、平行四邊形、矩形、菱形、正方形、梯形等;
?、亲饕阎獔D形關(guān)于一點(diǎn)、一條直線對(duì)稱(chēng)的圖形;
?、葧?huì)作三角形的外接圓、內(nèi)切圓;
?、善椒忠阎?
?、首鲀蓷l線段的比例中項(xiàng);
?、俗髡切?、正四邊形、正六邊形等;
八、幾何計(jì)算
(一)角度與弧度的計(jì)算
1、三角形和四邊形的角的計(jì)算主要依據(jù)
?、湃切蔚膬?nèi)角和定理及推論。
?、扑倪呅蔚膬?nèi)角和定理及推論。
?、?圓內(nèi)接四邊形性質(zhì)定理。
2、弧和相關(guān)的角的計(jì)算主要依據(jù)
⑴圓心角的度數(shù)等于它所對(duì)的弧的度數(shù)。
⑵圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半。
⑶弦切角的度數(shù)等于所夾弧度數(shù)的一半。
3、多邊形的角的計(jì)算主要依據(jù)
?、舗邊形的內(nèi)角和=(n-2)*180°
⑵正n邊形的每一內(nèi)角=(n-2)*180°÷n
?、?正n邊形的任一外角等于各邊所對(duì)的中心角
(二)長(zhǎng)度的計(jì)算
1、 三角形、平行四邊形和梯形的計(jì)算
用到的定理主要有三角形全等定理,中位線定理,等腰三角形、直角三角形、正三角形及各種平行四邊形的性質(zhì)等定理。關(guān)于梯形中線段計(jì)算主要依據(jù)梯形中位線定理及等腰梯形、直角梯形的性質(zhì)定理等。
2、有關(guān)圓的線段計(jì)算的主要依據(jù)
⑴切線長(zhǎng)定理;
?、茍A切線的性質(zhì)定理;
⑶垂徑定理;
?、?圓外切四邊形兩組對(duì)邊的和相等;
⑹ 兩圓外切時(shí)圓心距等于兩圓半徑之和,兩圓內(nèi)切時(shí)圓心距等于兩半徑之差;
3、直角三角形邊的計(jì)算
直角三角形邊長(zhǎng)的計(jì)算應(yīng)用最廣,其理論依據(jù)主要是勾股定理和特殊角三角形的性質(zhì)及銳角三角函數(shù)等。
4、成比例線段長(zhǎng)度的求法
?、牌叫芯€分線段成比例定理;
⑵相似形對(duì)應(yīng)線段的比等于相似比;
?、巧溆岸ɡ?
⑷相交弦定理及推論,切割線定理及推論;
?、烧噙呅蔚倪吅推渌€段計(jì)算轉(zhuǎn)化為特殊三角形。
(三)圖形面積的計(jì)算
1、四邊形的面積公式
?、臩□ABCD = a·h
?、芐菱形 = 1/2a·b (a、b為對(duì)角線)
?、荢梯形 = 1/2(a + b)·h = m·h (m為中位線)
2、三角形的面積公式
?、臩△ = 1/2· a·h
⑵S△ = 1/2· P·r(P為三角形周長(zhǎng),r為三角形內(nèi)切圓的半徑)
3、S圓 =πR²
4、S扇形 = 1/2LR
5、S弓形 = S扇 -S△
九、證明兩線段相等的方法:
1、利用全等三角形對(duì)應(yīng)線段相等;
2、利用等腰三角形性質(zhì);
3、利用同一個(gè)三角形中等角對(duì)等邊;
4、利用線段垂直平分線;
5、角平分線的性質(zhì);
6、利用軸對(duì)稱(chēng)的性質(zhì);
7、平行線等分線段定理;
8、平行四邊形性質(zhì);
9、垂徑定理:垂直于弦的直徑平分這條弦,并且平分這條弦所對(duì)的兩條弧。推論1:平分一條弦所對(duì)的弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。
10、圓心角、弧、弦、弦心距的關(guān)系定理及推論;
11、切線長(zhǎng)定理。
十、證明弧相等的方法:
1、定義;同圓或等圓中,能夠完全重合的兩段弧。
2、垂徑定理:垂直于弦的直徑平分這條弦,并且平分這條弦所對(duì)的兩條弧。
推論1:①平分弦(不是直徑)的直徑垂直弦,并且平分弦所對(duì)的兩條弧。
?、诖怪逼椒忠粭l弦的直線,經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。
?、燮椒忠粭l弦所對(duì)的弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。
推論2:兩條平行弦所夾的弧相等
3、圓心角、弧、圓周角之間度數(shù)關(guān)系;(圓心角 = 弧 = 2圓周角)
4、圓周角定理的推論1;(同弧或等弧所對(duì)的圓周角相等,同圓或等圓中相等的圓周角所對(duì)的弧相等)
十一、切線小結(jié)
1、證明切線的三種方法:
?、哦x——一個(gè)交點(diǎn);
?、芼=r(若一條直線到圓心的距離等于半徑,則這條直線是圓的切線);
?、乔芯€的判定定理;(經(jīng)過(guò)半徑外端,并且垂直這條半徑的直線是圓的切線)
2、切線的八個(gè)性質(zhì):
?、哦x:唯一交點(diǎn);
?、魄芯€和圓心的距離等于半徑(d=r);
⑶切線的性質(zhì)定理:圓的切線垂直于過(guò)切點(diǎn)的半徑;
?、韧普?:過(guò)圓心(且垂直于切線的直線)必過(guò)切點(diǎn);
⑸推論2:過(guò)切點(diǎn)(且垂直于切線的直線)必過(guò)圓心;
?、是芯€長(zhǎng)相等;過(guò)圓外一點(diǎn)作圓的兩條切線,它們的切線長(zhǎng)相等,并且這一點(diǎn)和圓心的連線平分兩切線的夾角。
?、?連接兩平行切線切點(diǎn)間的線段為直徑
⑻ 經(jīng)過(guò)直徑兩端點(diǎn)的切線互相平行。
3、證明切線的兩種類(lèi)型:
?、乓阎本€和圓相交于一點(diǎn)
證明方法:連交點(diǎn),證垂直
?、莆粗本€和圓是否相交于哪點(diǎn)或沒(méi)告訴交點(diǎn)
證明方法:做垂直,證半徑
十二、輔助線的作用與添加方法:
輔助線是溝通已知與未知的橋梁.現(xiàn)已學(xué)過(guò)的添加輔助線方法有:
1、梯形的七類(lèi)輔助線:
?、抛魈菪蔚母?⑵延長(zhǎng)兩腰;⑶平移一腰;
?、绕揭茖?duì)角線;⑸利用中點(diǎn);⑹連結(jié)兩腰中點(diǎn);
2、一般的輔助線
?、胚^(guò)兩定點(diǎn)作直線;
?、谱魅切蔚母?、中線、角平分線;
⑶延長(zhǎng)某一線段;
?、茸饕稽c(diǎn)關(guān)于已知直線的對(duì)稱(chēng)點(diǎn);
?、蓸?gòu)造直角三角形;
?、首髌叫芯€;
?、俗靼霃?
⑻弦心距;
?、蜆?gòu)造直徑上的圓周角;
?、蝺蓤A相交時(shí)常連公共弦;
?、蠘?gòu)造相交弦;
⑿見(jiàn)中點(diǎn)連中點(diǎn)構(gòu)造中位線;
?、褍蓤A外切時(shí)作內(nèi)公切線;
?、覂蓤A內(nèi)切時(shí)作外公切線;
⒂作輔助圖形(如勾股定理逆定理的證明中作輔助三角形);
初中數(shù)學(xué)解題方法大匯總相關(guān)文章: