九年級蘇教版數(shù)學(xué)知識點(diǎn)
學(xué)習(xí)的成功與失敗原因是多方面的,要首先從自己身上找原因,找出努力的方向。每一門科目都有自己的學(xué)習(xí)方法,但其實(shí)都是萬變不離其中的,數(shù)學(xué)其實(shí)和語文英語一樣,也是要記、要背、要練的。下面是小編給大家整理的一些九年級數(shù)學(xué)的知識點(diǎn),希望對大家有所幫助。
九年級數(shù)學(xué)上學(xué)期知識點(diǎn)
1.算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時,a才有算術(shù)平方根。
2.平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
3.正數(shù)有兩個平方根(一正一負(fù))它們互為相反數(shù);0只有一個平方根,就是它本身;負(fù)數(shù)沒有平方根。
4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
5.數(shù)a的相反數(shù)是-a,一個正實(shí)數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0
實(shí)數(shù)部分主要要求學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對應(yīng),能估算無理數(shù)的大小;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。
函數(shù)
1.一次函數(shù):若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。
2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。
3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時,直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時,直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小。
4.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法
一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識的基石。在學(xué)習(xí)本章內(nèi)容時,教師應(yīng)該多從實(shí)際問題出發(fā),引出變量,從具體到抽象的認(rèn)識事物。培養(yǎng)學(xué)生良好的變化與對應(yīng)意識,體會數(shù)形結(jié)合的思想。在教學(xué)過程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問題的同時,讓學(xué)習(xí)體會到數(shù)學(xué)的實(shí)用價(jià)值和樂趣。
初三上數(shù)學(xué)知識點(diǎn)歸納
直角三角形的判定方法:
判定1:定義,有一個角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個三角形30°內(nèi)角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。
判定4:兩個銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線相交且它們的斜率之積互為負(fù)倒數(shù),則兩直線互相垂直。那么
判定6:若在一個三角形中一邊上的中線等于其所在邊的一半,那么這個三角形為直角三角形。
判定7:一個三角形30°角所對的邊等于這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)
三角形的外心定義:
外心:是三角形三條邊的垂直平分線的交點(diǎn),即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線交于一點(diǎn)。該點(diǎn)叫做三角形的外心。
三角形的外心的性質(zhì):
1.三角形三條邊的垂直平分線的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;
2三角形的外接圓有且只有一個,即對于給定的三角形,其外心是的,但一個圓的內(nèi)接三角形卻有無數(shù)個,這些三角形的外心重合;
3.銳角三角形的外心在三角形內(nèi);
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點(diǎn)重合。
在△ABC中
4.OA=OB=OC=R
5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6.S△ABC=abc/4R
九年級上冊數(shù)學(xué)復(fù)習(xí)資料
一、軸對稱與軸對稱圖形:
1.軸對稱:把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱,兩個圖形中的對應(yīng)點(diǎn)叫做對稱點(diǎn),對應(yīng)線段叫做對稱線段。
2.軸對稱圖形:如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。
注意:對稱軸是直線而不是線段
3.軸對稱的性質(zhì):
(1)關(guān)于某條直線對稱的兩個圖形是全等形;
(2)如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線;
(3)兩個圖形關(guān)于某條直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上;
(4)如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。
4.線段垂直平分線:
(1)定義:垂直平分一條線段的直線是這條線的垂直平分線。
(2)性質(zhì):①線段垂直平分線上的點(diǎn)到這條線段兩個端點(diǎn)的距離相等;
②到一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點(diǎn),并且這一點(diǎn)到三個頂點(diǎn)的距離相等。
5.角的平分線:
(1)定義:把一個角分成兩個相等的角的射線叫做角的平分線.
(2)性質(zhì):①在角的平分線上的點(diǎn)到這個角的兩邊的距離相等.
②到一個角的兩邊距離相等的點(diǎn),在這個角的平分線上.
注意:根據(jù)角平分線的性質(zhì),三角形的三個內(nèi)角的平分線交于一點(diǎn),并且這一點(diǎn)到三條邊的距離相等.
6.等腰三角形的性質(zhì)與判定:
性質(zhì):
(1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸;
(2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;
(3)等邊對等角:等腰三角形的兩個底角相等。
說明:等腰三角形的性質(zhì)除“三線合一”外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:①等腰三角形兩底角的平分線相等;②等腰三角形兩腰上的中線相等;
③等腰三角形兩腰上的高相等;④等腰三角形底邊上的中點(diǎn)到兩腰的距離相等。
判定定理:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。
7.等邊三角形的性質(zhì)與判定:
性質(zhì):(1)等邊三角形的三個角都相等,并且每個角都等于60°;
(2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有“三線合一”。因此等邊三角形是軸對稱圖形,它有三條對稱軸,而等腰三角形(非等邊三角形)只有一條對稱軸。
判定定理:有一個角是60°的等腰三角形是等邊三角形。
說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。
九年級蘇教版數(shù)學(xué)知識點(diǎn)相關(guān)文章:
★ 九年級新學(xué)期數(shù)學(xué)知識點(diǎn)蘇教版
★ 九年級上冊數(shù)學(xué)知識點(diǎn)歸納整理
★ 初三數(shù)學(xué)知識點(diǎn)歸納總結(jié)
★ 初三數(shù)學(xué)知識點(diǎn)考點(diǎn)歸納總結(jié)
★ 九年級數(shù)學(xué)知識點(diǎn)歸納總結(jié)