九年級數(shù)學(xué)知識點歸納
各個科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,基本離不開背、記,練,數(shù)學(xué)作為最燒腦的科目之一,也是一樣的。下面是小編給大家整理的九年級數(shù)學(xué)知識點,希望對大家有所幫助。
初三下冊數(shù)學(xué)知識點總結(jié)
半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。
切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細辨。
是直徑,成半圓,想成直角徑連弦。弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。還要作個內(nèi)接圓,內(nèi)角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點公切線。
若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉(zhuǎn)去實驗。
基本作圖很關(guān)鍵,平時掌握要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。
切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會減。
虛心勤學(xué)加苦練,成績上升成直線。
九年級下冊數(shù)學(xué)知識點
知識點1.概念
把形狀相同的圖形叫做相似圖形。(即對應(yīng)角相等、對應(yīng)邊的比也相等的圖形)
解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到.
(2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同.
(3)判斷兩個圖形是否相似,就是看這兩個圖形是不是形狀相同,與其他因素?zé)o關(guān).
知識點2.比例線段
對于四條線段a,b,c,d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即(或a:b=c:d)那么這四條線段叫做成比例線段,簡稱比例線段.
知識點3.相似多邊形的性質(zhì)
相似多邊形的性質(zhì):相似多邊形的對應(yīng)角相等,對應(yīng)邊的比相等.
解讀:(1)正確理解相似多邊形的定義,明確“對應(yīng)”關(guān)系.
(2)明確相似多邊形的“對應(yīng)”來自于書寫,且要明確相似比具有順序性.
知識點4.相似三角形的概念
對應(yīng)角相等,對應(yīng)邊之比相等的三角形叫做相似三角形.
解讀:(1)相似三角形是相似多邊形中的一種;
(2)應(yīng)結(jié)合相似多邊形的性質(zhì)來理解相似三角形;
(3)相似三角形應(yīng)滿足形狀一樣,但大小可以不同;
(4)相似用“∽”表示,讀作“相似于”;
(5)相似三角形的對應(yīng)邊之比叫做相似比.
知識點5.相似三角的判定方法
(1)定義:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形相似;
(2)平行于三角形一邊的直線截其他兩邊(或其他兩邊的延長線)所構(gòu)成的三角形與原三角形相似.
(3)如果一個三角形的兩個角分別與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似.
(4)如果一個三角的兩條邊與另一個三角形的兩條邊對應(yīng)成比例,并且夾角相等,那么這兩個三角形相似.
(5)如果一個三角形的三條邊分別與另一個三角形的三條邊對應(yīng)成比例,那么這兩個三角形相似.
(6)直角三角形被斜邊上的高分成的兩個直角三角形與原三角形都相似.
知識點6.相似三角形的性質(zhì)
(1)對應(yīng)角相等,對應(yīng)邊的比相等;
(2)對應(yīng)高的比,對應(yīng)中線的比,對應(yīng)角平分線的比都等于相似比;
(3)相似三角形周長之比等于相似比;面積之比等于相似比的平方.
(4)射影定理
蘇教版九年級上冊數(shù)學(xué)知識點歸納
1二次根式:形如式子為二次根式;
性質(zhì):是一個非負數(shù);
2二次根式的乘除:
3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并.
4海倫-秦九韶公式:,S是的面積,p為.
1:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的次是2的方程.
2配方法:將方程的一邊配成完全平方式,然后兩邊開方;
因式分解法:左邊是兩個因式的乘積,右邊為零.
3一元二次方程在實際問題中的應(yīng)用
4韋達定理:設(shè)是方程的兩個根,那么有
1:一個圖形繞某一點轉(zhuǎn)動一個角度的圖形變換
性質(zhì):對應(yīng)點到中心的距離相等;
對應(yīng)點與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角
旋轉(zhuǎn)前后的圖形全等.
2中心對稱:一個圖形繞一個點旋轉(zhuǎn)180度,和另一個圖形重合,則兩個圖形關(guān)于這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
九年級數(shù)學(xué)知識點歸納相關(guān)文章:
★ 初三數(shù)學(xué)知識點考點歸納總結(jié)
★ 九年級數(shù)學(xué)上冊重要知識點總結(jié)
★ 初中九年級數(shù)學(xué)知識點總結(jié)歸納