2022九年級數(shù)學知識點歸納
學習從來無捷徑。每一門科目都有自己的學習方法,但其實都是萬變不離其中的,數(shù)學其實和語文英語一樣,也是要記、要背、要練的。下面是小編給大家整理的九年級數(shù)學知識點,希望對大家有所幫助。
九年級數(shù)學知識點
旋轉變換
1.概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
說明:(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;(2)旋轉過程中旋轉中心始終保持不動.(3)旋轉過程中旋轉的方向是相同的.(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的.⑤旋轉不改變圖形的大小和形狀.
2.性質:(1)對應點到旋轉中心的距離相等;
(2)對應點與旋轉中心所連線段的夾角等于旋轉角;
(3)旋轉前、后的圖形全等.
3.旋轉作圖的步驟和方法:(1)確定旋轉中心及旋轉方向、旋轉角;(2)找出圖形的關鍵點;(3)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數(shù),得到這些關鍵點的對應點;(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形.
說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角.
九年級下冊數(shù)學知識點總結
圓周角
1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。
2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑。(①常見輔助線:有直徑可構成直角,有900圓周角可構成直徑;②找圓心的方法:作兩個900圓周角所對兩弦交點)
4、圓內接四邊形的性質定理:圓內接四邊形的對角互補。(任意一個外角等于它的內對角)
補充:1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時,所夾角等于它所對的兩條弧度數(shù)差的一半。2)在圓內相交時,所夾的角等于它所夾兩條弧度數(shù)和的一半。
3、同弧所對的(在弧的同側)圓內部角其次是圓周角,最小的是圓外角。
初三年級下學期數(shù)學知識點
【反比例函數(shù)】
形如y=k/x(k為常數(shù)且k≠0,x≠0,y≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實數(shù)。
反比例函數(shù)圖像性質:
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
當K>0時,反比例函數(shù)圖像經過一,三象限,是減函數(shù)(即y隨x的增大而減小)
當K<0時,反比例函數(shù)圖像經過二,四象限,是增函數(shù)(即y隨x的增大而增大)
由于反比例函數(shù)的自變量和因變量都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。
1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/x(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
九年級數(shù)學知識點歸納相關文章: