特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

時間: 淑娟24587 分享

高一數(shù)學(xué)怎么學(xué)?高中數(shù)學(xué)的理論性、抽象性強(qiáng),就需要在對知識的理解上下功夫,要多思考,多研究。今天小編在這給大家整理了高一數(shù)學(xué)知識點(diǎn)總結(jié),接下來隨著小編一起來看看吧!

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)


↓↓↓點(diǎn)擊獲取更多“數(shù)學(xué)”相關(guān)內(nèi)容↓↓↓

★★ 關(guān)于數(shù)學(xué)的由來簡介 ★★

★★ 數(shù)學(xué)謎語大全及答案 ★★

★★ 數(shù)學(xué)手抄報(bào)內(nèi)容精選★★

★★ 數(shù)學(xué)名人故事簡短版 ★★


高一數(shù)學(xué)知識點(diǎn)總結(jié)(一)

1.集合的有關(guān)概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。

②集合中的元素具有確定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數(shù)集:n,z,q,r,n_

2.子集、交集、并集、補(bǔ)集、空集、全集等概念。

1)子集:若對x∈a都有x∈b,則a b(或a b);

2)真子集:a b且存在x0∈b但x0 a;記為a b(或 ,且 )

3)交集:a∩b={x| x∈a且x∈b}

4)并集:a∪b={x| x∈a或x∈b}

5)補(bǔ)集:cua={x| x a但x∈u}

注意:①? a,若a≠?,則? a ;

②若 , ,則 ;

③若 且 ,則a=b(等集)

3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。

4.有關(guān)子集的幾個等價關(guān)系

①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;

④a∩cub = 空集 cua b;⑤cua∪b=i a b。

5.交、并集運(yùn)算的性質(zhì)

①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;

③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;

6.有限子集的個數(shù):設(shè)集合a的元素個數(shù)是n,則a有2n個子集,2n-1個非空子集,2n-2個非空真子集。

高一數(shù)學(xué)知識點(diǎn)總結(jié)(二)

等差數(shù)列公式

等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d

或an=am+(n-m)d

前n項(xiàng)和公式為:sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2

若m+n=2p則:am+an=2ap

以上n均為正整數(shù)

文字翻譯

第n項(xiàng)的值=首項(xiàng)+(項(xiàng)數(shù)-1)_公差

前n項(xiàng)的和=(首項(xiàng)+末項(xiàng))_項(xiàng)數(shù)/2

公差=后項(xiàng)-前項(xiàng)

高中數(shù)學(xué)數(shù)列知識點(diǎn)總結(jié):等比數(shù)列公式

等比數(shù)列求和公式

(1) 等比數(shù)列:a (n+1)/an=q (n∈n)。

(2) 通項(xiàng)公式:an=a1×q^(n-1); 推廣式:an=am×q^(n-m);

(3) 求和公式:sn=n×a1 (q=1) sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q為公比,n為項(xiàng)數(shù))

(4)性質(zhì):

①若 m、n、p、q∈n,且m+n=p+q,則am×an=ap×aq;

②在等比數(shù)列中,依次每 k項(xiàng)之和仍成等比數(shù)列.

③若m、n、q∈n,且m+n=2q,則am×an=aq^2

(5)"g是a、b的等比中項(xiàng)""g^2=ab(g ≠ 0)".

(6)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零. 注意:上述公式中an表示等比數(shù)列的第n項(xiàng)。

等比數(shù)列求和公式推導(dǎo): sn=a1+a2+a3+...+an(公比為q) q_sn=a1_q+a2_q+a3_q+...+an_q =a2+a3+a4+...+a(n+1) sn-q_sn=a1-a(n+1) (1-q)sn=a1-a1_q^n sn=(a1-a1_q^n)/(1-q) sn=(a1-an_q)/(1-q) sn=a1(1-q^n)/(1-q) sn=k_(1-q^n)~y=k_(1-a^x)。

高一數(shù)學(xué)知識點(diǎn)總結(jié)(三)

立體幾何初步

1、柱、錐、臺、球的結(jié)構(gòu)特征

(1)棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱

幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點(diǎn)字母,如五棱錐

幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

(3)棱臺:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

表示:用各頂點(diǎn)字母,如五棱臺

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個扇形。

(6)圓臺:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點(diǎn):①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

高一數(shù)學(xué)知識點(diǎn)總結(jié)(四)

幾何定理

1 過兩點(diǎn)有且只有一條直線

2 兩點(diǎn)之間線段最短

3 同角或等角的補(bǔ)角相等

4 同角或等角的余角相等

5 過一點(diǎn)有且只有一條直線和已知直線垂直

6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

7 平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內(nèi)錯角相等,兩直線平行

11 同旁內(nèi)角互補(bǔ),兩直線平行

12 兩直線平行,同位角相等

13 兩直線平行,內(nèi)錯角相等

14 兩直線平行,同旁內(nèi)角互補(bǔ)

15 定理 三角形兩邊的和大于第三邊

16 推論 三角形兩邊的差小于第三邊

17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

21 全等三角形的對應(yīng)邊、對應(yīng)角相等

22 邊角邊公理(sas) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

23 角邊角公理( asa)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

24 推論(aas) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

25 邊邊邊公理(sss) 有三邊對應(yīng)相等的兩個三角形全等

26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

27 定理1 在角的平分線上的點(diǎn)到這個角的兩邊的距離相等

28 定理2 到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上

29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)

31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°

34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35 推論1 三個角都相等的三角形是等邊三角形

36 推論 2 有一個角等于60°的等腰三角形是等邊三角形

37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

38 直角三角形斜邊上的中線等于斜邊上的一半

39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等

40 逆定理 和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形

43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

44 定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

45 逆定理 如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

46 勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形

48 定理 四邊形的內(nèi)角和等于360°

49 四邊形的外角和等于360°

50 多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

51 推論 任意多邊的外角和等于360°

52 平行四邊形性質(zhì)定理1 平行四邊形的對角相等

53 平行四邊形性質(zhì)定理2 平行四邊形的對邊相等

54 推論 夾在兩條平行線間的平行線段相等

55 平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分

56 平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57 平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58 平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59 平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60 矩形性質(zhì)定理1 矩形的四個角都是直角

61 矩形性質(zhì)定理2 矩形的對角線相等

62 矩形判定定理1 有三個角是直角的四邊形是矩形

63 矩形判定定理2 對角線相等的平行四邊形是矩形

64 菱形性質(zhì)定理1 菱形的四條邊都相等

65 菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

66 菱形面積=對角線乘積的一半,即s=(a×b)÷2

67 菱形判定定理1 四邊都相等的四邊形是菱形

68 菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69 正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等

70 正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

71 定理1 關(guān)于中心對稱的兩個圖形是全等的

72 定理2 關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分

73 逆定理 如果兩個圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個圖形關(guān)于這一點(diǎn)對稱

74 等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等

75 等腰梯形的兩條對角線相等

76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77 對角線相等的梯形是等腰梯形

78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79 推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

80 推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 l=(a+b)÷2 s=l×h

83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d

84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b

86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例

87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

91 相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(asa)

92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93 判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(sas)

94 判定定理3 三邊對應(yīng)成比例,兩三角形相似(sss)

95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

96 性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

97 性質(zhì)定理2 相似三角形周長的比等于相似比

98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方

99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值

100 任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

101 圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

102 圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

103 圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

104 同圓或等圓的半徑相等

105 到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

106 和已知線段兩個端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

107 到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個角的平分線

108 到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

109 定理 不在同一直線上的三點(diǎn)確定一個圓。

110 垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

111 推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

112 推論2 圓的兩條平行弦所夾的弧相等

113 圓是以圓心為對稱中心的中心對稱圖形

114 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

115 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

116 定理 一條弧所對的圓周角等于它所對的圓心角的一半

117 推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118 推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

119 推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

120 定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

121 ①直線l和⊙o相交 d

②直線l和⊙o相切 d=r

③直線l和⊙o相離 d>r

122 切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

123 切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑

124 推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

125 推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

126 切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

127 圓的外切四邊形的兩組對邊的和相等

128 弦切角定理 弦切角等于它所夾的弧對的圓周角

129 推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

130 相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等

131 推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

132 切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

133 推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

134 如果兩個圓相切,那么切點(diǎn)一定在連心線上

135 ①兩圓外離 d>r+r

②兩圓外切 d=r+r

③兩圓相交 r-rr)

④兩圓內(nèi)切 d=r-r(r>r) ⑤兩圓內(nèi)含dr)

136 定理 相交兩圓的連心線垂直平分兩圓的公共弦

137 定理 把圓分成n(n≥3):

⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形

⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形

138 定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

139 正n邊形的每個內(nèi)角都等于(n-2)×180°/n

140 定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

141 正n邊形的面積sn=pnrn/2 p表示正n邊形的周長

142 正三角形面積√3a/4 a表示邊長

143 如果在一個頂點(diǎn)周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144 弧長計(jì)算公式:l=nπr/180

145 扇形面積公式:s扇形=nπr2/360=lr/2

146 內(nèi)公切線長= d-(r-r) 外公切線長= d-(r+r)

147 等腰三角形的兩個底腳相等

148 等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合

149 如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等

150三條邊都相等的三角形叫做等邊三角形

知識點(diǎn)總結(jié)

高一數(shù)學(xué)知識點(diǎn)總結(jié)(五)

第一章

〖1.1〗集合

【1.1.1】集合的含義與表示

(1)集合的概念

集合中的元素具有確定性、互異性和無序性.

(2)常用數(shù)集及其記法N表示自然數(shù)集,N_或N+表示正整數(shù)集,Z表示整數(shù)集,Q表示有理數(shù)集,R表示實(shí)數(shù)集.

(3)集合與元素間的關(guān)系

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

(4)集合的表示法

①自然語言法:用文字?jǐn)⑹龅男问絹砻枋黾?

②列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.

③描述法:{x|x具有的性質(zhì)},其中x為集合的代表元素.

④圖示法:用數(shù)軸或韋恩圖來表示集合.

(5)集合的分類

①含有有限個元素的集合叫做有限集.②含有無限個元素的集合叫做無限集.③不含有任何元素的集合叫做空集.

【1.1.2】集合間的基本關(guān)系

(6)子集、真子集、集合相等

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)
高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

【1.1.3】集合的基本運(yùn)算

(8)交集、并集、補(bǔ)集

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

【補(bǔ)充知識】含絕對值的不等式與一元二次不等式的解法

(1)含絕對值的不等式的解法

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

(2)一元二次不等式的解法

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

〖1.2〗函數(shù)及其表示

【1.2.1】函數(shù)的概念

(1)函數(shù)的概念

①設(shè)A、B是兩個非空的數(shù)集,如果按照某種對應(yīng)法則f,對于集合A中任何一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么這樣的對應(yīng)(包括集合A,B以及A到B的對應(yīng)法則f)叫做集合A到B的一個函數(shù),記作f:A→B.

②函數(shù)的三要素:定義域、值域和對應(yīng)法則.

③只有定義域相同,且對應(yīng)法則也相同的兩個函數(shù)才是同一函數(shù).

(2)區(qū)間的概念及表示法

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{7}}$

(3)求函數(shù)的定義域時,一般遵循以下原則:

①f(x)是整式時,定義域是全體實(shí)數(shù).

②f(x)是分式函數(shù)時,定義域是使分母不為零的一切實(shí)數(shù).

③f(x)是偶次根式時,定義域是使被開方式為非負(fù)值時的實(shí)數(shù)的集合

④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1.

⑥零(負(fù))指數(shù)冪的底數(shù)不能為零.

⑦若f(x)是由有限個基本初等函數(shù)的四則運(yùn)算而合成的函數(shù)時,則其定義域一般是各基本初等函數(shù)的定義域的交集.

⑧對于求復(fù)合函數(shù)定義域問題,一般步驟是:若已知f(x)的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域應(yīng)由不等式a≤g(x)≤b解出.

⑨對于含字母參數(shù)的函數(shù),求其定義域,根據(jù)問題具體情況需對字母參數(shù)進(jìn)行分類討論.

⑩由實(shí)際問題確定的函數(shù),其定義域除使函數(shù)有意義外,還要符合問題的實(shí)際意義.

(4)求函數(shù)的值域或最值

求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同.求函數(shù)值域與最值的常用方法:

①觀察法:對于比較簡單的函數(shù),我們可以通過觀察直接得到值域或最值.

②配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或最值.

④不等式法:利用基本不等式確定函數(shù)的值域或最值.

⑤換元法:通過變量代換達(dá)到化繁為簡、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問題轉(zhuǎn)化為三角函數(shù)的最值問題.

⑥反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關(guān)系確定函數(shù)的值域或最值.

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

⑦數(shù)形結(jié)合法:利用函數(shù)圖象或幾何方法確定函數(shù)的值域或最值.

⑧函數(shù)的單調(diào)性法.

【1.2.2】函數(shù)的表示法

(5)函數(shù)的表示方法

表示函數(shù)的方法,常用的有解析法、列表法、圖象法三種.

解析法:就是用數(shù)學(xué)表達(dá)式表示兩個變量之間的對應(yīng)關(guān)系.列表法:就是列出表格來表示兩個變量之間的對應(yīng)關(guān)系.圖象法:就是用圖象表示兩個變量之間的對應(yīng)關(guān)系.

(6)映射的概念

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

④不等式法:利用基本不等式確定函數(shù)的值域或最值.

⑤換元法:通過變量代換達(dá)到化繁為簡、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問題轉(zhuǎn)化為三角函數(shù)的最值問題.

⑥反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關(guān)系確定函數(shù)的值域或最值.

⑦數(shù)形結(jié)合法:利用函數(shù)圖象或幾何方法確定函數(shù)的值域或最值.

⑧函數(shù)的單調(diào)性法.

【1.2.2】函數(shù)的表示法

(5)函數(shù)的表示方法

表示函數(shù)的方法,常用的有解析法、列表法、圖象法三種.

解析法:就是用數(shù)學(xué)表達(dá)式表示兩個變量之間的對應(yīng)關(guān)系.列表法:就是列出表格來表示兩個變量之間的對應(yīng)關(guān)系.圖象法:就是用圖象表示兩個變量之間的對應(yīng)關(guān)系.

(6)映射的概念

${{9}}$

〖1.3〗函數(shù)的基本性質(zhì)

【1.3.1】單調(diào)性與最大(小)值

(1)函數(shù)的單調(diào)性

①定義及判定方法

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

②在公共定義域內(nèi),兩個增函數(shù)的和是增函數(shù),兩個減函數(shù)的和是減函數(shù),增函數(shù)減去一個減函數(shù)為增函數(shù),減函數(shù)減去一個增函數(shù)為減函數(shù).

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{13}}

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

【1.3.2】奇偶性

(4)函數(shù)的奇偶性

①定義及判定方法

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

②若函數(shù)f(x)為奇函數(shù),且在x=0處有定義,則f(0)=0.

③奇函數(shù)在y軸兩側(cè)相對稱的區(qū)間增減性相同,偶函數(shù)在y軸兩側(cè)相對稱的區(qū)間增減性相反.

④在公共定義域內(nèi),兩個偶函數(shù)(或奇函數(shù))的和(或差)仍是偶函數(shù)(或奇函數(shù)),兩個偶函數(shù)(或奇函數(shù))的積(或商)是偶函數(shù),一個偶函數(shù)與一個奇函數(shù)的積(或商)是奇函數(shù).

〖補(bǔ)充知識〗函數(shù)的圖象

(1)作圖

利用描點(diǎn)法作圖:

①確定函數(shù)的定義域;

②化解函數(shù)解析式;

③討論函數(shù)的性質(zhì)(奇偶性、單調(diào)性);

④畫出函數(shù)的圖象.

利用基本函數(shù)圖象的變換作圖:

要準(zhǔn)確記憶一次函數(shù)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等各種基本初等函數(shù)的圖象.

①平移變換

②伸縮變換

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

③對稱變換

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

(2)識圖

對于給定函數(shù)的圖象,要能從圖象的左右、上下分別范圍、變化趨勢、對稱性等方面研究函數(shù)的定義域、值域、單調(diào)性、奇偶性,注意圖象與函數(shù)解析式中參數(shù)的關(guān)系.

(3)用圖

函數(shù)圖象形象地顯示了函數(shù)的性質(zhì),為研究數(shù)量關(guān)系問題提供了“形”的直觀性,它是探求解題途徑,獲得問題結(jié)果的重要工具.要重視數(shù)形結(jié)合解題的思想方法.

第二章 基本初等函數(shù)(Ⅰ)

〖2.1〗指數(shù)函數(shù)

【2.1.1】指數(shù)與指數(shù)冪的運(yùn)算

(1)根式的概念

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{19}}

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{21}}$

【2.1.2】指數(shù)函數(shù)及其性質(zhì)

(4)指數(shù)函數(shù)

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

〖2.2〗對數(shù)函數(shù)

【2.2.1】對數(shù)與對數(shù)運(yùn)算

(1)對數(shù)的定義

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{24}}

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

【2.2.2】對數(shù)函數(shù)及其性質(zhì)

(5)對數(shù)函數(shù)

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{27}}

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

〖2.3〗冪函數(shù)

(1)冪函數(shù)的定義

一般地,函數(shù)y=xa叫做冪函數(shù),其中x為自變量,a是常數(shù).

(2)冪函數(shù)的圖象

(3)冪函數(shù)的性質(zhì)

①圖象分布:冪函數(shù)圖象分布在第一、二、三象限,第四象限無圖象.冪函數(shù)是偶函數(shù)時,圖象分布在第一、二象限(圖象關(guān)于軸對稱);是奇函數(shù)時,圖象分布在第一、三象限(圖象關(guān)于原點(diǎn)對稱);是非奇非偶函數(shù)時,圖象只分布在第一象

②過定點(diǎn):所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都通過點(diǎn)(1,1)

③單調(diào)性:如果a>0,則冪函數(shù)的圖象過原點(diǎn),并且在[0, +∞)上為增函數(shù).如果a<0,則冪函數(shù)的圖象在[0, +∞)上為減函數(shù),在第一象限內(nèi),圖象無限接近x軸與y軸.

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{30}}$

〖補(bǔ)充知識〗二次函數(shù)

(1)二次函數(shù)解析式的三種形式

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

(2)求二次函數(shù)解析式的方法

①已知三個點(diǎn)坐標(biāo)時,宜用一般式.

②已知拋物線的頂點(diǎn)坐標(biāo)或與對稱軸有關(guān)或與最大(小)值有關(guān)時,常使用頂點(diǎn)式.

③若已知拋物線與X軸有兩個交點(diǎn),且橫線坐標(biāo)已知時,選用兩根式求f(x)更方便.

(3)二次函數(shù)圖象的性質(zhì)

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{33}}

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

一元二次方程根的分布是二次函數(shù)中的重要內(nèi)容,這部分知識在初中代數(shù)中雖有所涉及,但尚不夠系統(tǒng)和完整,且解決的方法偏重于二次方程根的判別式和根與系數(shù)關(guān)系定理(韋達(dá)定理)的運(yùn)用,下面結(jié)合二次函數(shù)圖象的性質(zhì),系統(tǒng)地來分析一元二次方程實(shí)根的分布.

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{36}}

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{38}}

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

⑥k1<x1<k2≤p1<x2<p2 p="" 此結(jié)論可直接由⑤推出.

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

{{41}}

第三章 函數(shù)的應(yīng)用

方程的根與函數(shù)的零點(diǎn)

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)相關(guān)文章:

高一數(shù)學(xué)知識點(diǎn)全面總結(jié)

高中數(shù)學(xué)知識點(diǎn)全總結(jié)最全版

高中數(shù)學(xué)知識點(diǎn)全總結(jié)

高一數(shù)學(xué)知識點(diǎn)匯總大全

高一數(shù)學(xué)知識點(diǎn)歸納總結(jié)

高一數(shù)學(xué)知識點(diǎn)總結(jié)(人教版)

高一數(shù)學(xué)知識點(diǎn)總結(jié)歸納

高一數(shù)學(xué)重要知識點(diǎn)

高一數(shù)學(xué)知識點(diǎn)總結(jié)

高一數(shù)學(xué)知識點(diǎn)小歸納

474661