特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

2022高一數(shù)學(xué)知識點(diǎn)總結(jié)

時(shí)間: 淑娟0 分享

高一數(shù)學(xué)怎么學(xué)?預(yù)習(xí)可以使自己對新課有一個(gè)基本理解,但不等于上課可以放松注意力降低思維緊張度,相反而應(yīng)對自己提出更高的要求。今天小編在這給大家整理了高一數(shù)學(xué)知識點(diǎn)總結(jié),接下來隨著小編一起來看看吧!

高一數(shù)學(xué)知識點(diǎn)總結(jié)(一)

一、集合有關(guān)概念

1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。

2、集合的中元素的三個(gè)特性:

1.元素的確定性;2.元素的互異性;3.元素的無序性

說明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。

(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊(duì)員}B={12345}

2.集合的表示方法:列舉法與描述法。

注意?。撼S脭?shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

關(guān)于“屬于”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A

列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

4、集合的分類:

1.有限集含有有限個(gè)元素的集合

2.無限集含有無限個(gè)元素的集合

3.空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA

2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)A={x|x2-1=0}B={-11}“元素相同”

結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

①任何一個(gè)集合是它本身的子集。A?A

②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?BB?C那么A?C

④如果A?B同時(shí)B?A那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的運(yùn)算

1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.

記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A

A∪φ=AA∪B=B∪A.

4、全集與補(bǔ)集

(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

記作:CSA即CSA={x?x?S且x?A}

(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。

(3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

高一數(shù)學(xué)知識點(diǎn)總結(jié)(二)

函數(shù)的值域與最值

1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

(1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

(2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.

(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

(4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.

(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.

如函數(shù)的值域是(0,16],最大值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.

3、函數(shù)的最值在實(shí)際問題中的應(yīng)用

函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實(shí)際問題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實(shí)問題上,求解時(shí)要特別關(guān)注實(shí)際意義對自變量的制約,以便能正確求得最值.

函數(shù)的奇偶性

1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡或應(yīng)用定義的等價(jià)形式。

高一數(shù)學(xué)知識點(diǎn)總結(jié)(三)

立體幾何初步

NO.1 柱、錐、臺、球的結(jié)構(gòu)特征

棱柱

定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱。

幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

棱錐

定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點(diǎn)字母,如五棱錐

幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

棱臺

定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等

表示:用各頂點(diǎn)字母,如五棱臺

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

圓柱

定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

圓錐

定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

圓臺

定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

球體

定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

高一數(shù)學(xué)知識點(diǎn)總結(jié)(四)

集合的分類

(1)按元素屬性分類,如點(diǎn)集,數(shù)集。

(2)按元素的個(gè)數(shù)多少,分為有/無限集

關(guān)于集合的概念:

(1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個(gè)集合,任何一個(gè)對象是不是這個(gè)集合的元素也就確定了。

(2)互異性:對于一個(gè)給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個(gè)元素都是不同的對象,相同的對象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

(3)無序性:判斷一些對象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。

集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:

含有有限個(gè)元素的集合叫做有限集,含有無限個(gè)元素的集合叫做無限集。

非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_;

整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對應(yīng)的數(shù)。)

1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號表示。

例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

無限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

大括號內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高一數(shù)學(xué)知識點(diǎn)總結(jié)(五)

高一下冊數(shù)學(xué)??贾R點(diǎn)

定義:

x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。

范圍:

傾斜角的取值范圍是0°≤α<180°。

理解:

(1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;

(2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。

意義:

①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;

②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;

③傾斜角相同,未必表示同一條直線。

公式:

k=tanα

k>0時(shí)α∈(0°,90°)

k<0時(shí)α∈(90°,180°)

k=0時(shí)α=0°

當(dāng)α=90°時(shí)k不存在

ax+by+c=0(a≠0)傾斜角為A,

則tanA=-a/b,

A=arctan(-a/b)

當(dāng)a≠0時(shí),

傾斜角為90度,即與X軸垂直

2020高一數(shù)學(xué)知識點(diǎn)總結(jié)相關(guān)文章

2020高一數(shù)學(xué)學(xué)習(xí)方法總結(jié)大全

最新2020高一下學(xué)期數(shù)學(xué)教學(xué)工作總結(jié)5篇

2020高一數(shù)學(xué)教學(xué)工作總結(jié)范文

高一數(shù)學(xué)教師工作總結(jié)以及2020年工作計(jì)劃

高一數(shù)學(xué)教師上學(xué)期個(gè)人工作總結(jié)2020優(yōu)秀范文5篇

2020高一數(shù)學(xué)教學(xué)的工作計(jì)劃5篇

2020高一數(shù)學(xué)老師的工作計(jì)劃

2020高一下學(xué)期數(shù)學(xué)教師工作總結(jié)以及下年計(jì)劃范文

2020高一下學(xué)期數(shù)學(xué)老師的工作計(jì)劃

2020高一學(xué)期數(shù)學(xué)教師的工作計(jì)劃

474592