人教版高中數(shù)學(xué)必修一電子課本
數(shù)學(xué),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科,那么關(guān)于高中數(shù)學(xué)必修一電子課本怎么學(xué)習(xí)呢?以下是小編準(zhǔn)備的一些人教版高中數(shù)學(xué)必修一電子課本,僅供參考。
高中數(shù)學(xué)必修一電子課本
查看完整版可微信搜索公眾號(hào)【5068教學(xué)資料】,關(guān)注后對(duì)話框回復(fù)【11】獲取高中數(shù)學(xué)電子課本資源。
高一年級(jí)必修一數(shù)學(xué)知識(shí)點(diǎn)
求函數(shù)值域
(1)、觀察法:通過對(duì)函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;
(2)、配方法;如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;
(3)、判別式法:
(4)、數(shù)形結(jié)合法;通過觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;
(5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;
(6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來求出值域;
(7)、利用基本不等式:對(duì)于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;
(8)、最值法:對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;
(9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。
高一年級(jí)數(shù)學(xué)必修一練習(xí)題
一、選擇題
1.下列各項(xiàng)中,不可以組成集合的是( )
A.所有的正數(shù) B.等于 的數(shù)
C.接近于 的數(shù) D.不等于 的偶數(shù)
2.下列四個(gè)集合中,是空集的是( )
A. B.
C. D.
3.下列表示圖形中的陰影部分的是( )
A.
B.
C.
D.
4.下面有四個(gè)命題:
(1)集合 中小的數(shù)是 ;
(2)若 不屬于 ,則 屬于 ;
(3)若 則 的小值為 ;
(4) 的解可表示為 ;
其中正確命題的個(gè)數(shù)為( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
5.若集合 中的元素是△ 的三邊長(zhǎng),
則△ 一定不是( )
A.銳角三角形 B.直角三角形
C.鈍角三角形 D.等腰三角形
6.若全集 ,則集合 的真子集共有( )
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
二、填空題
1.用符號(hào)“ ”或“ ”填空
(1) ______ , ______ , ______
(2) ( 是個(gè)無理數(shù))
(3) ________
2. 若集合 , , ,則 的
非空子集的個(gè)數(shù)為 。
3.若集合 , ,則 _____________.
4.設(shè)集合 , ,且 ,
則實(shí)數(shù) 的取值范圍是 。
5.已知 ,則 _________。
高一數(shù)學(xué)教學(xué)計(jì)劃
一、學(xué)生狀況分析
學(xué)生整體水平一般,成績(jī)以中等為主,中上不多,后進(jìn)生也有一些。幾個(gè)班中,從上課一周來看,學(xué)生的學(xué)習(xí)進(jìn)取性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識(shí)不太牢固,上課效率不是很高。
二、教材分析
使用北師大版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》,教材在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可理解性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點(diǎn)線平面間的位置關(guān)系;直線與方程;圓與方程)。
三、教學(xué)任務(wù)
本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學(xué)質(zhì)量目標(biāo)
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。
2、提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。
3、提高學(xué)生提出、分析和解決問題(包括簡(jiǎn)單的實(shí)際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的本事。
4、發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,體會(huì)數(shù)學(xué)的`美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要資料,堅(jiān)持“抓兩頭、帶中間、整體推進(jìn)”,使每個(gè)學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。
教學(xué)方法及推進(jìn)措施
六、相關(guān)措施:
高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢(mèng)想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長(zhǎng),應(yīng)對(duì)新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)。所列基礎(chǔ)知識(shí)依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)資料,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,本事要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。
(3)培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對(duì)所學(xué)知識(shí)進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。
(4)讓學(xué)生經(jīng)過單元考試,檢測(cè)自我的實(shí)際應(yīng)用本事,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競(jìng)選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用本事的培養(yǎng)。
(7)重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
(8)合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
(9)加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事和解決實(shí)際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
(10)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。
(11)自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對(duì)不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)理解知識(shí)轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識(shí)。
七、教學(xué)進(jìn)度安排:
(略)
高一數(shù)學(xué)必修一教案
一、教學(xué)目標(biāo)
1.知識(shí)與技能:
(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
(3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。
2.過程與方法:
(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
3.情感態(tài)度與價(jià)值觀:
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀。
四、教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
1、由六根火柴最多可搭成幾個(gè)三角形?(空間:4個(gè))
2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?
3、展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體。
問題:請(qǐng)根據(jù)某種標(biāo)準(zhǔn)對(duì)以上空間物體進(jìn)行分類。
(二)、研探新知
空間幾何體:多面體(面、棱、頂點(diǎn)):棱柱、棱錐、棱臺(tái);
旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺(tái)、球。
1、棱柱的結(jié)構(gòu)特征:
(1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點(diǎn)是什么?共同特點(diǎn)是什么?
(學(xué)生討論)
(2)棱柱的主要結(jié)構(gòu)特征(棱柱的概念):
①有兩個(gè)面互相平行;
②其余各面都是平行四邊形;
③每相鄰兩上四邊形的公共邊互相平行。
(3)棱柱的表示法及分類:
(4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點(diǎn)。
2、棱錐、棱臺(tái)的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片;
(2)以類似的方法,根據(jù)出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類以及表示。
棱錐:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形。
棱臺(tái):且一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片——如何得到圓柱?
(2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。
4、圓錐、圓臺(tái)、球的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片
——如何得到圓錐、圓臺(tái)、球?
(2)以類似的方法,根據(jù)圓錐、圓臺(tái)、球的'結(jié)構(gòu)特征,以及相關(guān)概念和表示。
5、柱體、錐體、臺(tái)體的概念及關(guān)系:
探究:棱柱、棱錐、棱臺(tái)都是多面體,它們?cè)诮Y(jié)構(gòu)上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如何?當(dāng)?shù)酌姘l(fā)生變化時(shí),它們能否互相轉(zhuǎn)化?
圓柱、圓錐、圓臺(tái)呢?
6、簡(jiǎn)單組合體的結(jié)構(gòu)特征:
(1)簡(jiǎn)單組合體的構(gòu)成:由簡(jiǎn)單幾何體拼接或截去或挖去一部分而成。
(2)實(shí)物模型演示,投影圖片——說出組成這些物體的幾何結(jié)構(gòu)特征。
(3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
(三)排難解惑,發(fā)展思維
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?