高一數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)
高一數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)2022
總結(jié)在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對(duì)學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書(shū)面材料,它可以促使我們思考,不如靜下心來(lái)好好寫(xiě)寫(xiě)總結(jié)吧。那么如何把總結(jié)寫(xiě)出新花樣呢?下面是小編給大家?guī)?lái)的高一數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié),以供大家參考!
高一數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)
函數(shù)的概念
函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A---B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.
(1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;
(2)與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
函數(shù)的三要素:定義域、值域、對(duì)應(yīng)法則
函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域
(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點(diǎn)等等。
(3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。
4、函數(shù)圖象知識(shí)歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿(mǎn)足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.
(2)畫(huà)法
A、描點(diǎn)法:B、圖象變換法:平移變換;伸縮變換;對(duì)稱(chēng)變換,即平移。
(3)函數(shù)圖像平移變換的特點(diǎn):
1)加左減右——————只對(duì)x
2)上減下加——————只對(duì)y
3)函數(shù)y=f(x)關(guān)于X軸對(duì)稱(chēng)得函數(shù)y=-f(x)
4)函數(shù)y=f(x)關(guān)于Y軸對(duì)稱(chēng)得函數(shù)y=f(-x)
5)函數(shù)y=f(x)關(guān)于原點(diǎn)對(duì)稱(chēng)得函數(shù)y=-f(-x)
6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動(dòng)得
函數(shù)y=|f(x)|
7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對(duì)稱(chēng)的圖像得函數(shù)f(|x|)
高一數(shù)學(xué)知識(shí)點(diǎn)通用
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand).
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
【函數(shù)的應(yīng)用】
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
1(代數(shù)法)求方程的實(shí)數(shù)根;
2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).
人教版高一數(shù)學(xué)知識(shí)點(diǎn)歸納大全
元素與集合的關(guān)系有“屬于”與“不屬于”兩種。
集合與集合之間的關(guān)系
某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無(wú)限個(gè)元素叫無(wú)限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性?!赫f(shuō)明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱(chēng)作是B的子集,寫(xiě)作A?B。若A是B的子集,且A不等于B,則A稱(chēng)作是B的真子集,一般寫(xiě)作A?B。中學(xué)教材課本里將?符號(hào)下加了一個(gè)≠符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。』
高一數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)相關(guān)文章:
★ 高一數(shù)學(xué)知識(shí)點(diǎn)梳理歸納
★ 高一數(shù)學(xué)重要知識(shí)點(diǎn)梳理
★ 高一數(shù)學(xué)重要知識(shí)點(diǎn)整理
★ 高一學(xué)年數(shù)學(xué)總知識(shí)點(diǎn)復(fù)習(xí)歸納
★ 高一數(shù)學(xué)必會(huì)必考的相關(guān)知識(shí)點(diǎn)分析
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備
★ 高一數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)歸納
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2021