蘇教版高一數(shù)學(xué)必修知識點梳理
學(xué)習(xí)這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目學(xué)習(xí)方法其實都是一樣的,不斷的記憶與練習(xí),使知識刻在腦海里。下面是小編給大家整理的一些高一數(shù)學(xué)的知識點,希望對大家有所幫助。
高一數(shù)學(xué)必修二重要知識點
兩個平面的位置關(guān)系:
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關(guān)系:
兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。
b、相交
二面角
(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直
兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。
高一數(shù)學(xué)必修一第一章知識點
第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二:平面向量和三角函數(shù)。
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。
第三:數(shù)列。
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四:空間向量和立體幾何。
在里面重點考察兩個方面:一個是證明;一個是計算。
高一年級數(shù)學(xué)高效學(xué)習(xí)方法
1.先看專題一,整數(shù)指數(shù)冪的有關(guān)概念和運算性質(zhì),以及一些常用公式,這公式不但在初中要求熟練掌握,高中的課程也是經(jīng)常要用到的。
2.二次函數(shù),二次方程不僅是初中重點,也是難點。在高中還是要學(xué)的內(nèi)容,并且增加了一元二次不等式的解法,這個就要根據(jù)二次函數(shù)圖像來理解了!解不等式的時候就要從先解方程的根開始,二次項系數(shù)大于0時,有個口訣得記下:“大于號取兩邊,小于號取中間”。
3.因式分解的方法這個比較重要,高中也是經(jīng)常用的,比如證明函數(shù)的單調(diào)性,常在做差變形是需要因式分解,還有解一元多次方程的時候往往也先需要分解因式,之后才能求出方程的根。
4.判別式很重要,不僅能判斷二次方程的根有幾個,大于零2個根;等于零1個根;小于零無根。而且還能判斷二次函數(shù)零點的情況,人教版必修一就會學(xué)到。集合里面有許多題也要用到。
高一數(shù)學(xué)必修知識點梳理相關(guān)文章: