高一數(shù)學知識點魯教版
學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那只能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是小編給大家整理的一些高一數(shù)學知識點,希望對大家有所幫助。
高一數(shù)學必修五知識點總結(jié)
1.函數(shù)思想:把某變化過程中的一些相互制約的變量用函數(shù)關(guān)系表達出來,并研究這些量間的相互制約關(guān)系,最后解決問題,這就是函數(shù)思想;
2.應用函數(shù)思想解題,確立變量之間的函數(shù)關(guān)系是一關(guān)鍵步驟,大體可分為下面兩個步驟:
(1)根據(jù)題意建立變量之間的函數(shù)關(guān)系式,把問題轉(zhuǎn)化為相應的函數(shù)問題;
(2)根據(jù)需要構(gòu)造函數(shù),利用函數(shù)的相關(guān)知識解決問題;
(3)方程思想:在某變化過程中,往往需要根據(jù)一些要求,確定某些變量的值,這時常常列出這些變量的方程或(方程組),通過解方程(或方程組)求出它們,這就是方程思想;
3.函數(shù)與方程是兩個有著密切聯(lián)系的數(shù)學概念,它們之間相互滲透,很多方程的問題需要用函數(shù)的知識和方法解決,很多函數(shù)的問題也需要用方程的方法的支援,函數(shù)與方程之間的辯證關(guān)系,形成了函數(shù)方程思想。
高一數(shù)學知識點
一、函數(shù)的單調(diào)性
1、函數(shù)單調(diào)性的定義
2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復合函數(shù)分析法 (3)導數(shù)證明法 (4)圖象法
二、函數(shù)的奇偶性和周期性
1、函數(shù)的奇偶性和周期性的定義
2、函數(shù)的奇偶性的判定和證明方法
3、函數(shù)的周期性的判定方法
三、函數(shù)的圖象
1、函數(shù)圖象的作法 (1)描點法 (2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
常見考法
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
誤區(qū)提醒
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。
3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。
5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。
高一數(shù)學必修四知識點梳理
方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點.
3、函數(shù)零點的求法:
(1)(代數(shù)法)求方程的實數(shù)根;
(2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
4、二次函數(shù)的零點:
(1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
(2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
1、培養(yǎng)良好的學習習慣。
(1)制定計劃明確學習目的。合理的學習計劃是推動我們主動學習和克服困難的內(nèi)在動力。計劃先由老師指導督促,再一定要由自己切實完成,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學習意志。
(2)課前預習是取得較好學習效果的基礎(chǔ)。課前預習不僅能培養(yǎng)自學能力,而且能提高學習新課的興趣,掌握學習的主動權(quán)。預習不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點,突破難點,盡可能把問題解決在課堂上。
(3)上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。學然后知不足,上課更能專心聽重點難點,把老師補充的內(nèi)容記錄下來,而不是全抄全錄,顧此失彼。
(4)及時復習是提高效率學習的重要一環(huán)。通過反復閱讀教材,多方面查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學的新知識由懂到會。
(5)獨立作業(yè)是通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程也是對我們意志毅力的考驗,通過運用使我們對所學知識由會到熟。
(6)解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復思考。實在解決不了的要請教老師和同學,并要經(jīng)常把易錯的地方拿來復習強化,作適當?shù)闹貜托跃毩?,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由熟到活。
(7)系統(tǒng)小結(jié)是通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復習的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系,以達到對所學知識融會貫通的目的。經(jīng)常進行多層次小結(jié),能對所學知識由活到悟。
(8)課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等。課外學習是課內(nèi)學習的補充和繼續(xù),它不僅能豐富同學們的文化科學知識,加深和鞏固課內(nèi)所學的知識,而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨立學習和工作的能力,激發(fā)求知欲與學習熱情。
2、循序漸進,積極歸因,防止急躁。
由于高一同學年齡較小,閱歷有限,為數(shù)不少的同學容易急躁。有的同學貪多求快,囫圇吞棗,想靠幾天沖刺一蹴而就。學習是一個長期的鞏固舊知、發(fā)現(xiàn)新知的積累過程,決非一朝一夕可以完成的。許多優(yōu)秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。讓高一同學學會積極歸因,樹立自信心,如:取得一點成績及時體會成功,強化學習能力;遇到挫折及時調(diào)整學習方法、策略,更加努力改變挫折,循序漸進,爭取在高考成功。
3、注意研究學科特點,尋找學習方法。
數(shù)學學科擔負著培養(yǎng)運算能力、邏輯思維能力、空間想象能力,以及運用所學知識分析問題、解決問題的能力的重任。其中運算能力的培養(yǎng)一定要講究活,只看書不做題不行,只埋頭做題不總結(jié)積累也不行,教學中進行一題多解思考,優(yōu)化運算策略;邏輯思維能力是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高,使用歸類、網(wǎng)聯(lián)策略,區(qū)別好幾個概念:三段式推理、四種命題和充要條件的關(guān)系;空間想象能力對平面知識的擴充既要能鉆進去,又要能跳出來,結(jié)合立體幾何,體會圖形、符號和文字之間的互化;運用所學知識分析問題、解決問題的能力,就是要重視應用題的轉(zhuǎn)化訓練,歸類數(shù)學模型,體會數(shù)學語言。華羅庚先生倡導的由薄到厚和由厚到薄的學習過程就是這個道理,方法因人而異,但學習的四個環(huán)節(jié)(預習、上課、作業(yè)、復習)和一個步驟(歸納總結(jié))是少不了的。
高一數(shù)學知識點魯教版相關(guān)文章:
★ 備考資料
★ 魯教版化合價教案
★ 地理培訓心得體會
高一數(shù)學知識點魯教版




