高一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
學(xué)習(xí)需要制定詳細(xì)的計(jì)劃,計(jì)劃本身對(duì)大家有較強(qiáng)的約束和督促作用,計(jì)劃對(duì)學(xué)習(xí)既有指導(dǎo)作用,又有推動(dòng)作用。制定好的學(xué)習(xí)計(jì)劃,是提高工作效率的重要手段。下面是小編給大家整理的一些高一數(shù)學(xué)的知識(shí)點(diǎn),希望對(duì)大家有所幫助。
高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)梳理
函數(shù)的性質(zhì)
函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1
如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2)圖象的特點(diǎn)
如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(A)定義法:
(1)任取x1,x2∈D,且x1
(2)作差f(x1)-f(x2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));
(5)下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).
(B)圖象法(從圖象上看升降)
(C)復(fù)合函數(shù)的單調(diào)性
復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(2)奇函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
高一數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)
⑴公差為d的等差數(shù)列,各項(xiàng)同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d.
⑵公差為d的等差數(shù)列,各項(xiàng)同乘以常數(shù)k所得數(shù)列仍是等差數(shù)列,其公差為kd.
⑶若{a}、為等差數(shù)列,則{a±b}與{ka+b}(k、b為非零常數(shù))也是等差數(shù)列.
⑷對(duì)任何m、n,在等差數(shù)列{a}中有:a=a+(n-m)d,特別地,當(dāng)m=1時(shí),便得等差數(shù)列的通項(xiàng)公式,此式較等差數(shù)列的通項(xiàng)公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數(shù),且l+k+p+…=m+n+r+…(兩邊的自然數(shù)個(gè)數(shù)相等),那么當(dāng){a}為等差數(shù)列時(shí),有:a+a+a+…=a+a+a+….
⑹公差為d的等差數(shù)列,從中取出等距離的項(xiàng),構(gòu)成一個(gè)新數(shù)列,此數(shù)列仍是等差數(shù)列,其公差為kd(k為取出項(xiàng)數(shù)之差).
⑺如果{a}是等差數(shù)列,公差為d,那么,a,a,…,a、a也是等差數(shù)列,其公差為-d;在等差數(shù)列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差數(shù)列中,從第一項(xiàng)起,每一項(xiàng)(有窮數(shù)列末項(xiàng)除外)都是它前后兩項(xiàng)的等差中項(xiàng).
⑼當(dāng)公差d>0時(shí),等差數(shù)列中的數(shù)隨項(xiàng)數(shù)的增大而增大;當(dāng)d<0時(shí),等差數(shù)列中的數(shù)隨項(xiàng)數(shù)的減少而減小;d=0時(shí),等差數(shù)列中的數(shù)等于一個(gè)常數(shù).
⑽設(shè)a,a,a為等差數(shù)列中的三項(xiàng),且a與a,a與a的項(xiàng)距差之比=(≠-1),則a=.
⑴數(shù)列{a}為等差數(shù)列的充要條件是:數(shù)列{a}的前n項(xiàng)和S可以寫成S=an+bn的形式(其中a、b為常數(shù)).
⑵在等差數(shù)列{a}中,當(dāng)項(xiàng)數(shù)為2n(nN)時(shí),S-S=nd,=;當(dāng)項(xiàng)數(shù)為(2n-1)(n)時(shí),S-S=a,=.
⑶若數(shù)列{a}為等差數(shù)列,則S,S-S,S-S,…仍然成等差數(shù)列,公差為.
⑷若兩個(gè)等差數(shù)列{a}、的前n項(xiàng)和分別是S、T(n為奇數(shù)),則=.
⑸在等差數(shù)列{a}中,S=a,S=b(n>m),則S=(a-b).
⑹等差數(shù)列{a}中,是n的一次函數(shù),且點(diǎn)(n,)均在直線y=x+(a-)上.
⑺記等差數(shù)列{a}的前n項(xiàng)和為S.①若a>0,公差d<0,則當(dāng)a≥0且a≤0時(shí),S;②若a<0,公差d>0,則當(dāng)a≤0且a≥0時(shí),S最小.
高一數(shù)學(xué)學(xué)習(xí)方法
1、培養(yǎng)良好的學(xué)習(xí)習(xí)慣。
(1)制定計(jì)劃明確學(xué)習(xí)目的。合理的學(xué)習(xí)計(jì)劃是推動(dòng)我們主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。計(jì)劃先由老師指導(dǎo)督促,再一定要由自己切實(shí)完成,既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過(guò)程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。
(2)課前預(yù)習(xí)是取得較好學(xué)習(xí)效果的基礎(chǔ)。課前預(yù)習(xí)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動(dòng)權(quán)。預(yù)習(xí)不能搞走過(guò)場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問(wèn)題解決在課堂上。
(3)上課是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。學(xué)然后知不足,上課更能專心聽重點(diǎn)難點(diǎn),把老師補(bǔ)充的內(nèi)容記錄下來(lái),而不是全抄全錄,顧此失彼。
(4)及時(shí)復(fù)習(xí)是提高效率學(xué)習(xí)的重要一環(huán)。通過(guò)反復(fù)閱讀教材,多方面查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來(lái),進(jìn)行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對(duì)所學(xué)的新知識(shí)由懂到會(huì)。
(5)獨(dú)立作業(yè)是通過(guò)自己的獨(dú)立思考,靈活地分析問(wèn)題、解決問(wèn)題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的掌握過(guò)程。這一過(guò)程也是對(duì)我們意志毅力的考驗(yàn),通過(guò)運(yùn)用使我們對(duì)所學(xué)知識(shí)由會(huì)到熟。
(6)解決疑難是指對(duì)獨(dú)立完成作業(yè)過(guò)程中暴露出來(lái)對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過(guò)點(diǎn)撥使思路暢通,補(bǔ)遺解答的過(guò)程。解決疑難一定要有鍥而不舍的精神。做錯(cuò)的作業(yè)再做一遍。對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考。實(shí)在解決不了的要請(qǐng)教老師和同學(xué),并要經(jīng)常把易錯(cuò)的地方拿來(lái)復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問(wèn)同學(xué)獲得的東西消化變成自己的知識(shí),長(zhǎng)期堅(jiān)持使對(duì)所學(xué)知識(shí)由熟到活。
(7)系統(tǒng)小結(jié)是通過(guò)積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識(shí)和發(fā)展認(rèn)識(shí)能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過(guò)分析、綜合、類比、概括,揭示知識(shí)間的內(nèi)在聯(lián)系,以達(dá)到對(duì)所學(xué)知識(shí)融會(huì)貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對(duì)所學(xué)知識(shí)由活到悟。
(8)課外學(xué)習(xí)包括閱讀課外書籍與報(bào)刊,參加學(xué)科競(jìng)賽與講座,走訪高年級(jí)同學(xué)或老師交流學(xué)習(xí)心得等。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富同學(xué)們的文化科學(xué)知識(shí),加深和鞏固課內(nèi)所學(xué)的知識(shí),而且能夠滿足和發(fā)展我們的興趣愛(ài)好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。
高一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)相關(guān)文章:
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)上冊(cè)
★ 高一數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)
★ 高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全
★ 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)
★ 高一數(shù)學(xué)上學(xué)期的所有知識(shí)點(diǎn)
★ 高一數(shù)學(xué)上學(xué)期重點(diǎn)必用的知識(shí)點(diǎn)
★ 高一數(shù)學(xué)上學(xué)期所有知識(shí)點(diǎn)
★ 關(guān)于高一數(shù)學(xué)上冊(cè)的知識(shí)點(diǎn)