特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高一學(xué)習(xí)方法>高一數(shù)學(xué)>

高一數(shù)學(xué)練習(xí)冊知識點(diǎn)

時(shí)間: 贊銳0 分享

學(xué)習(xí)不光要有不怕困難,永不言敗的精神,還有有勤奮的努力,著名科學(xué)家愛迪生曾說過:“天才就是1%的靈感加上99%的汗水,但那1%的靈感是最重要的,甚至比那99%的汗水都要重要。”以下是小編給大家整理的高一數(shù)學(xué)練習(xí)冊知識點(diǎn),希望能幫助到你!

高一數(shù)學(xué)練習(xí)冊知識點(diǎn)1

集合常用大寫拉丁字母來表示,如:A,B,C…而對于集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當(dāng)于集合的名字,沒有任何實(shí)際的意義。

將拉丁字母賦給集合的方法是用一個(gè)等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括號括起來的,括號內(nèi)部是具有某種共同性質(zhì)的數(shù)學(xué)元素。

常用的有列舉法和描述法。

1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做列舉法。{1,2,3,……}

2.描述法﹕常用于表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個(gè)集合的元素的共同屬性)如:小于π的正實(shí)數(shù)組成的集合表示為:{x|0

3.圖示法(venn圖)﹕為了形象表示集合,我們常常畫一條封閉的曲線(或者說圓圈),用它的內(nèi)部表示一個(gè)集合。集合

自然語言常用數(shù)集的符號:

(1)全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集(或自然數(shù)集),記作N;不包括0的自然數(shù)集合,記作N_

(2)非負(fù)整數(shù)集內(nèi)排除0的集,也稱正整數(shù)集,記作Z+;負(fù)整數(shù)集內(nèi)也排除0的集,稱負(fù)整數(shù)集,記作Z-

(3)全體整數(shù)的集合通常稱作整數(shù)集,記作Z

(4)全體有理數(shù)的集合通常簡稱有理數(shù)集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質(zhì)}(正負(fù)有理數(shù)集合分別記作Q+Q-)

(5)全體實(shí)數(shù)的集合通常簡稱實(shí)數(shù)集,記作R(正實(shí)數(shù)集合記作R+;負(fù)實(shí)數(shù)記作R-)

(6)復(fù)數(shù)集合計(jì)作C集合的運(yùn)算:集合交換律A∩B=B∩AA∪B=B∪A集合結(jié)合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合

Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合時(shí),會遇到有關(guān)集合中的元素個(gè)數(shù)問題,我們把有限集合A的元素個(gè)數(shù)記為card(A)。

集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補(bǔ)律A∪CuA=UA∩CuA=Φ設(shè)A為集合,把A的全部子集構(gòu)成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復(fù)數(shù)集C實(shí)數(shù)集R正實(shí)數(shù)集R+負(fù)實(shí)數(shù)集R-整數(shù)集Z正整數(shù)集Z+負(fù)整數(shù)集Z-有理數(shù)集Q正有理數(shù)集Q+負(fù)有理數(shù)集Q-不含0的有理數(shù)集Q_

高一數(shù)學(xué)練習(xí)冊知識點(diǎn)2

冪函數(shù)定義:

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域:

當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

冪函數(shù)性質(zhì):

對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實(shí)數(shù);

排除了為0這種可能,即對于x

排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:

如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點(diǎn)。

(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

(6)顯然冪函數(shù)無界。

高一數(shù)學(xué)練習(xí)冊知識點(diǎn)3

定義域

(高中函數(shù)定義)設(shè)A,B是兩個(gè)非空的數(shù)集,如果按某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對應(yīng),那么就稱f:A--B為集合A到集合B的一個(gè)函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域;

值域

名稱定義

函數(shù)中,應(yīng)變量的取值范圍叫做這個(gè)函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合

常用的求值域的方法

(1)化歸法;(2)圖象法(數(shù)形結(jié)合);(3)函數(shù)單調(diào)性法;(4)配方法;(5)換元法;(6)反函數(shù)法(逆求法);(7)判別式法;(8)復(fù)合函數(shù)法;(9)三角代換法;(10)基本不等式法等

關(guān)于函數(shù)值域誤區(qū)

定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個(gè)基本“元件”。平時(shí)數(shù)學(xué)中,實(shí)行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強(qiáng)化定義域問題的同時(shí),往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學(xué)生對函數(shù)的掌握時(shí)好時(shí)壞,事實(shí)上,定義域與值域二者的位置是相當(dāng)?shù)?,絕不能厚此薄皮,何況它們二者隨時(shí)處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運(yùn)算性質(zhì)有時(shí)并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個(gè)角度來講,求值域的問題有時(shí)比求定義域問題難,實(shí)踐證明,如果加強(qiáng)了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認(rèn)識。

“范圍”與“值域”相同嗎?

“范圍”與“值域”是我們在學(xué)習(xí)中經(jīng)常遇到的兩個(gè)概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個(gè)不同的概念?!爸涤颉笔撬泻瘮?shù)值的集合(即集合中每一個(gè)元素都是這個(gè)函數(shù)的取值),而“范圍”則只是滿足某個(gè)條件的一些值所在的集合(即集合中的元素不一定都滿足這個(gè)條件)。也就是說:“值域”是一個(gè)“范圍”,而“范圍”卻不一定是“值域”。

高一數(shù)學(xué)練習(xí)冊知識點(diǎn)相關(guān)文章

高一數(shù)學(xué)集合知識點(diǎn)及練習(xí)題

高一的數(shù)學(xué)學(xué)復(fù)習(xí)方法

高一數(shù)學(xué)復(fù)習(xí)方法

高一數(shù)學(xué)記筆記的方法

高一數(shù)學(xué)學(xué)習(xí)方法與技巧

高一數(shù)學(xué)等差數(shù)列練習(xí)題及答案技巧

高中數(shù)學(xué)集合習(xí)題及答案

高一數(shù)學(xué)概率練習(xí)題及答案

高一期末數(shù)學(xué)復(fù)習(xí)計(jì)劃5篇

最新高中數(shù)學(xué)知識和方法

高一數(shù)學(xué)練習(xí)冊知識點(diǎn)

學(xué)習(xí)不光要有不怕困難,永不言敗的精神,還有有勤奮的努力,著名科學(xué)家愛迪生曾說過:“天才就是1%的靈感加上99%的汗水,但那1%的靈感是最重要的,甚至比那99%的汗水都要重要?!币韵率切【幗o大家整理的高
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 高一數(shù)學(xué)科上學(xué)期知識點(diǎn)
    高一數(shù)學(xué)科上學(xué)期知識點(diǎn)

    即使我們的成績不是很好,但只要有心想要學(xué)習(xí),那么我們就應(yīng)該笨鳥先飛,所謂"勤能補(bǔ)拙“沒有人一出生就是天才,他們都是經(jīng)過艱苦的努力,才會

  • 高一數(shù)學(xué)主要講什么知識點(diǎn)
    高一數(shù)學(xué)主要講什么知識點(diǎn)

    我們不能坐等自己那天突然變成天才,而是要點(diǎn)燃自己的力量之火,尋找自己的天才之路,努力奮斗, 成功是要付出努力的,付出汗水,沒有能隨隨便便

  • 高一數(shù)學(xué)科必修知識點(diǎn)總結(jié)
    高一數(shù)學(xué)科必修知識點(diǎn)總結(jié)

    在學(xué)習(xí)的路途中還有有遠(yuǎn)大的理想,有明確的目標(biāo),堅(jiān)定的決心,這樣較大實(shí)地一步一個(gè)腳印的走向自己的目標(biāo)。實(shí)現(xiàn)自己的夢想,不管在路途中遇到多大

  • 高一數(shù)學(xué)科必修必考知識點(diǎn)
    高一數(shù)學(xué)科必修必考知識點(diǎn)

    想在學(xué)習(xí)中獲得成功,也不是不是不可能的,只要我們能做到有永不言敗+勤奮學(xué)習(xí)+有遠(yuǎn)大的理想+堅(jiān)定的信念,堅(jiān)強(qiáng)的意志,明確地目標(biāo),而我想成功也是

1070054