特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高一數(shù)學(xué)知識(shí)點(diǎn)必修一

時(shí)間: 贊銳20 分享

人生要敢于理解挑戰(zhàn),經(jīng)受得起挑戰(zhàn)的人才能夠領(lǐng)悟人生非凡的真諦,才能夠?qū)崿F(xiàn)自我無限的超越,才能夠創(chuàng)造魅力永恒的價(jià)值。學(xué)習(xí)亦是如此,下面是小編給大家?guī)淼母咭粩?shù)學(xué)知識(shí)點(diǎn)必修一,希望你不負(fù)時(shí)光,努力向前,加油!

高一數(shù)學(xué)知識(shí)點(diǎn)必修一

高一數(shù)學(xué)知識(shí)點(diǎn)必修一1

一、集合有關(guān)概念

1.集合的含義

2.集合的中元素的三個(gè)特性:

(1)元素的確定性如:世界上的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數(shù)集及其記法:XKb1.Com

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集:N或N+

整數(shù)集:Z

有理數(shù)集:Q

實(shí)數(shù)集:R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個(gè)元素的集合

(2)無限集含有無限個(gè)元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:①任何一個(gè)集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同時(shí)BíA那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個(gè)數(shù):

有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集

三、集合的運(yùn)算

運(yùn)算類型交集并集補(bǔ)集

定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

高一數(shù)學(xué)知識(shí)點(diǎn)必修一2

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點(diǎn)的直線的斜率公式:

注意下面四點(diǎn):

(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關(guān);

(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

(3)直線方程

①點(diǎn)斜式:直線斜率k,且過點(diǎn)

注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

②斜截式:,直線斜率為k,直線在y軸上的截距為b

③兩點(diǎn)式:()直線兩點(diǎn),

④截矩式:其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

⑤一般式:(A,B不全為0)

⑤一般式:(A,B不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

(4)直線系方程:即具有某一共同性質(zhì)的直線

高一數(shù)學(xué)知識(shí)點(diǎn)必修一3

函數(shù)圖像(或方程曲線的對(duì)稱性)。

(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上。

(2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然。

(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。

(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0。

(5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱。

高一數(shù)學(xué)知識(shí)點(diǎn)必修一相關(guān)文章:

高中數(shù)學(xué)高一數(shù)學(xué)必修一知識(shí)點(diǎn)

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納

數(shù)學(xué)高一必修一知識(shí)點(diǎn)

高一數(shù)學(xué)必修1知識(shí)點(diǎn)歸納

高一數(shù)學(xué)必修1各章知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)必修一函數(shù)必背知識(shí)點(diǎn)整理

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【必修一】

高中必修一數(shù)學(xué)知識(shí)點(diǎn)歸納

1069097