高三數(shù)學知識點總結及數(shù)學學習方法
高三數(shù)學知識點總結及數(shù)學學習方法
很多同學都想知道高三數(shù)學的知識點有哪些,下面是小編整理的高三數(shù)學知識點,希望對同學們有所幫助。
2019高三數(shù)學知識點總結 這一篇就夠了
命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。
集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。
判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。
在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調遞增(減)區(qū)間即可。
對于函數(shù)y=Asin(ωx+φ)的單調性,當ω>0時,由于內層函數(shù)u=ωx+φ是單調遞增的,所以該函數(shù)的單調性和y=sin x的單調性相同,故可完全按照函數(shù)y=sin x的單調區(qū)間解決;但當ω<0時,內層函數(shù)u=ωx+φ是單調遞減的,此時該函數(shù)的單調性和函數(shù)y=sinx的單調性相反,就不能再按照函數(shù)y=sinx的單調性解決,一般是根據(jù)三角函數(shù)的奇偶性將內層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應該根據(jù)圖像,從直觀上進行判斷。
解題時要全面考慮問題。數(shù)學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。
零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。
等差數(shù)列的前n項和在公差不為零時是關于n的常數(shù)項為零的二次函數(shù);一般地,有結論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。
在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關系:an=S1,n=1,Sn-Sn-1,n≥2。這個關系對任意數(shù)列都是成立的,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。
高三數(shù)學必背的公式
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理
判別式
b2-4ac=0 注:方程有兩個相等的實根
b2-4ac>0 注:方程有兩個不等的實根
b2-4ac<0 注:方程沒有實根,有共軛復數(shù)根
三角函數(shù)公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
學好高中數(shù)學的方法
認真聽課適當做筆記,不放過任何聯(lián)想小結的機會是讀好書的關鍵。上課的內容有難有易,不能因為容易而輕視它,也不能因為困難而害怕它。容易的問題思維強度小,但所提供的思維空間卻很大,可以把自己的方法與老師的方法進行整合,對相關的問題進行小結,對問題的發(fā)展進行預測,為后面更難的問題積累充足的思維慣性。
弄清概念、性質和基本方法是每個學科學習的第一步也是最重要的一步,如果概念沒有弄清就去解題是沒有不碰壁的。正確理解概念再做習題就比較容易了,通過習題的演算反過來還可以進一步理解概念與性質。
在小學初中時復習靠老師,到了高中復習要靠自己。因為在高中的課程多,內容廣,所以在課堂上不可能經(jīng)常反復。一節(jié)課內容一個星期之內不復習就有可能變得陌生,最好是三天內復習一次。
高三數(shù)學一輪復習如何復習更有效率
學習數(shù)學需要通過復習來循序漸進地提高自己的數(shù)學能力,考生在數(shù)學首輪復習中,為了避免高三數(shù)學總復習的盲目性,真正做到復習的計劃性、針對性、實效性,下面有途網(wǎng)小編跟大家分享一下高三數(shù)學一輪復習如何復習更有效率,希望對你有幫助。
高三數(shù)學一輪復習如何復習更有效率一
回歸課本,注重基礎,重視預習。
數(shù)學的基本概念、定義、公式,數(shù)學知識點的聯(lián)系,基本的數(shù)學解題思路與方法,是第一輪復習的重中之重。回歸課本,自已先對知識點進行梳理,確?;靖拍?、公式等牢固掌握,要扎扎實實,不要盲目攀高,欲速則不達。復習課的容量大、內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之后,再聽老師講課,就會在記憶上對老師講的內容有所取舍,把重點放在自己還未掌握的內容上,從而提高復習效率。預習還可以培養(yǎng)自己的自學能力。
高三數(shù)學一輪復習如何復習更有效率二
提高課堂聽課效率,勤動手,多動腦。
高三的課只有兩種形式:復習課和評講課,到高三所有課都進入復習階段,通過復習,學生要能檢測出知道什么,哪些還不知道,哪些還不會,因此在復習課之前一定要有自己的思考,聽課的目的就明確了?,F(xiàn)在學生手中都會有一種復習資料,在老師講課之前,要把例題做一遍,做題中發(fā)現(xiàn)的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。此外還要特別注意老師講課中的提示。作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等做出簡單扼要的記錄,以便復習,消化,思考。習題的解答過程留在課后去完成,每記的地方留點空余的地方,以備自已的感悟。
高三數(shù)學一輪復習如何復習更有效率三
適量訓練是學好數(shù)學的保證
學好數(shù)學要做大量的題,但反過來做了大量的題,數(shù)學不一定好,“不要以做題多少論英雄”,因此要提高解題的效率,做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做一定量的練習是必要的。
1、要有針對性地做題,典型的題目,應該規(guī)范地完成,同時還應了解自己,有選擇地做一些課外的題;
2、要循序漸進,由易到難,要對做過了典型題目有一定的體會和變通,即按“學、練、思、結”程序對待典型的問題,這樣做能起到事半功倍的效果。
3、是無論是作業(yè)還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學好數(shù)學的重要問題。
4、獨立思考是數(shù)學的靈魂,遇到不懂或困難的問題時,要堅持獨立思考,不輕易問人,不要一遇到不會的東西就馬上去問別人,自己不動腦子,專門依賴別人,而是要自己先認真地思考一下,依靠自己的努力克服其中的某些困難,經(jīng)過很大的努力仍不能解決的問題,再虛心請教別人,請教時,不要把問題問得太透。學會提出問題,提出問題往往比解決問題更難,而且也更重要。
5.加強做題后的反思,解題不是目的,我們是通過解題來檢驗我們的學習效果,發(fā)現(xiàn)學習中的不足的,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會,對于一道完成的題目,有以下幾個方面需要總結:
1.在知識方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
2.在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
3.能不能把解題過程概括、歸納成幾個步驟(比如用數(shù)學歸納法證明題目就有很明顯的三個步驟)。
高三數(shù)學一輪復習如何復習更有效率四
養(yǎng)成良好的解題習慣
如仔細閱讀題目,看清數(shù)字,規(guī)范解題格式,部分同學(尤其是腦子比較好的同學)自己感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規(guī)范,在正規(guī)考試中即使答案對了,由于過程不完整被扣分較多。部分同學平時學習過程中自信心不足,做作業(yè)時免不了互相對答案,也不認真找出錯誤原因并加以改正。這些同學到了考場上常會出現(xiàn)心理性錯誤,導致“會而不對”,或是為了保證正確率,反復驗算,浪費很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正?!皶粚Α笔歉呷龜?shù)學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這是一種不良的學習習慣,必須在第一輪復習中逐步克服,否則,后患無窮??山Y合平時解題中存在的具體問題,逐題找出原因,看其是行為習慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位學生必備的,以便以后查詢。