特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

高考數(shù)學(xué)常用三角函數(shù)公式總結(jié)

時(shí)間: 巧綿20 分享

數(shù)學(xué)知識(shí)點(diǎn)很多,只有進(jìn)行總結(jié),才能發(fā)現(xiàn)重點(diǎn)難點(diǎn),下面就是小編給大家?guī)?lái)的,希望大家喜歡!

高考數(shù)學(xué)公式總結(jié)

高考數(shù)學(xué)三角函數(shù)公式

sinα=∠α的對(duì)邊/斜邊

cosα=∠α的鄰邊/斜邊

tanα=∠α的對(duì)邊/∠α的鄰邊

cotα=∠α的鄰邊/∠α的對(duì)邊

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1

tan2A=(2tanA)/(1-tanA2)

(注:SinA2是sinA的平方sin2(A))

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a=tana·tan(π/3+a)·tan(π/3-a)

三倍角公式推導(dǎo)

sin3a=sin(2a+a)=sin2acosa+cos2asina

三角函數(shù)輔助角公式

Asinα+Bcosα=(A2+B2)’(1/2)sin(α+t),其中

sint=B/(A2+B2)’(1/2)

cost=A/(A2+B2)’(1/2)

tant=B/A

Asinα+Bcosα=(A2+B2)’(1/2)cos(α-t),tant=A/B

降冪公式

sin2(α)=(1-cos(2α))/2=versin(2α)/2

cos2(α)=(1+cos(2α))/2=covers(2α)/2

tan2(α)=(1-cos(2α))/(1+cos(2α))

三角函數(shù)推導(dǎo)公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos2α

1-cos2α=2sin2α

1+sinα=(sinα/2+cosα/2)2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3a

cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosa

sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina2sin[(60+a)/2]cos[(60°-a)/2]2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)

cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa2cos[(a+30°)/2]cos[(a-30°)/2]{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

三角函數(shù)半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin2(a/2)=(1-cos(a))/2

cos2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角函數(shù)三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

三角函數(shù)兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

三角函數(shù)和差化積

sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]

cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]

cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

三角函數(shù)積化和差

sinαsinβ=[cos(α-β)-cos(α+β)]/2

cosαcosβ=[cos(α+β)+cos(α-β)]/2

sinαcosβ=[sin(α+β)+sin(α-β)]/2

cosαsinβ=[sin(α+β)-sin(α-β)]/2

三角函數(shù)誘導(dǎo)公式

sin(-α)=-sinα

cos(-α)=cosα

tan(—a)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

sin(π-α)=sinα

cos(π-α)=-cosα

sin(π+α)=-sinα

cos(π+α)=-cosα

tanA=sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限

萬(wàn)能公式

sinα=2tan(α/2)/[1+tan’(α/2)]

cosα=[1-tan’(α/2)]/1+tan’(α/2)]

tanα=2tan(α/2)/[1-tan’(α/2)]

其它公式

(1)(sinα)2+(cosα)2=1

(2)1+(tanα)2=(secα)2

(3)1+(cotα)2=(cscα)2

證明下面兩式,只需將一式,左右同除(sinα)2,第二個(gè)除(cosα)2即可

(4)對(duì)于任意非直角三角形,總有

tanA+tanB+tanC=tanAtanBtanC

證:A+B=π-Ctan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得tanA+tanB+tanC=tanAtanBtanC

得證同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC

(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC

(9)sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0以及

sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

高考數(shù)學(xué)記憶方法

一、分類(lèi)記憶法

遇到數(shù)學(xué)公式較多,一時(shí)難于記憶時(shí),可以將這些公式適當(dāng)分組。例如求導(dǎo)公式有18個(gè),就可以分成四組來(lái)記:(1)常數(shù)與冪函數(shù)的導(dǎo)數(shù)(2個(gè));(2)指數(shù)與對(duì)數(shù)函數(shù)的導(dǎo)數(shù)(4個(gè));(3)三角函數(shù)的導(dǎo)數(shù)(6個(gè));(4)反三角函數(shù)的導(dǎo)數(shù)(6個(gè))。求導(dǎo)法則有7個(gè),可分為兩組來(lái)記:(1)和、差、積、商復(fù)合函數(shù)的導(dǎo)數(shù)(4個(gè));(2)反函數(shù)、隱函數(shù)、冪指數(shù)函數(shù)的導(dǎo)數(shù)(3個(gè))。

二、推理記憶法

許多數(shù)學(xué)知識(shí)之間邏輯關(guān)系比較明顯,要記住這些知識(shí),只需記憶一個(gè),而其余可利用推理得到,這種記憶稱(chēng)為推理記憶。例如,平行四邊形的性質(zhì),我們只要記住它的定義,由定義推理得它的任一對(duì)角線把它平分成兩個(gè)全等三角形,繼而又推得它的對(duì)邊相等,對(duì)角相等,相鄰角互補(bǔ),兩條對(duì)角線互相平分等性質(zhì)。

三、標(biāo)志記憶法

在學(xué)習(xí)某一章節(jié)知識(shí)時(shí),先看一遍,對(duì)于重要部分用彩筆在下面畫(huà)上波浪線,再記憶時(shí),就不需要將整個(gè)章節(jié)的內(nèi)容從頭到尾逐字逐句的看了,只要看劃重點(diǎn)的地方并在它的啟示下就能記住本章節(jié)主要內(nèi)容,這種記憶稱(chēng)為標(biāo)志記憶。

四、回想記憶法

在重復(fù)記憶某一章節(jié)的知識(shí)時(shí),不看具體內(nèi)容,而是通過(guò)大腦回想達(dá)到重復(fù)記憶的目的,這種記憶稱(chēng)為回想記憶。在實(shí)際記憶時(shí),回想記憶法與標(biāo)志記憶法是配合使用的。

高考數(shù)學(xué)復(fù)習(xí)建議

初次學(xué)習(xí)和再次復(fù)習(xí)不同。絕大部分考生在高一高二兩年的時(shí)間中進(jìn)行的都是新知識(shí)新理論的學(xué)習(xí),這是初次認(rèn)識(shí)初次接觸的過(guò)程,我們稱(chēng)之為初次學(xué)習(xí),這個(gè)過(guò)程強(qiáng)調(diào)的是認(rèn)知、接受和掌握。而高三將近一年的時(shí)間考生幾乎接觸的都是之前兩年當(dāng)中見(jiàn)過(guò)的理解了的但是很多已經(jīng)遺忘的內(nèi)容,我們將這個(gè)過(guò)程稱(chēng)之為再次復(fù)習(xí)。再次復(fù)習(xí)除了恢復(fù)考生對(duì)相應(yīng)知識(shí)點(diǎn)的記憶之外,更重要的在于將知識(shí)點(diǎn)升華為考點(diǎn),這個(gè)過(guò)程重視的是理解、綜合與應(yīng)用。兩個(gè)過(guò)程截然不同,必然導(dǎo)致我們應(yīng)對(duì)的策略也要有所變化。

學(xué)習(xí)和復(fù)習(xí)的主線不同。學(xué)習(xí)的主線我們應(yīng)該都很熟悉,看一看教材的目錄就非常明確了:高一高二兩年當(dāng)中一定是以章節(jié)為單位,一個(gè)知識(shí)點(diǎn)接一個(gè)知識(shí)點(diǎn)按部就班地介紹和學(xué)習(xí)。每個(gè)章節(jié)內(nèi)部也是基本遵循“定義—定理—公式—經(jīng)典例題—實(shí)際應(yīng)用—練習(xí)”這樣由簡(jiǎn)到繁的內(nèi)容安排。而二次復(fù)習(xí)如果也采用這樣的模式,導(dǎo)致的直接結(jié)果就是,考生按知識(shí)點(diǎn)分塊的模式分章節(jié)去解題會(huì)很順利,一旦拿過(guò)來(lái)一份高考試卷,遇到里面的綜合性題目卻無(wú)從下手,這就是平時(shí)考生經(jīng)常遇到的問(wèn)題——沒(méi)有解題思路。

最有效的復(fù)習(xí)模式——以題型為主線。結(jié)合以上討論的兩點(diǎn)內(nèi)容,建議考生在復(fù)習(xí)過(guò)程中尤其是最后一輪復(fù)習(xí)中一定要以當(dāng)?shù)馗呖汲?碱}型為主線,以題型為主線逐步建立自己在考試當(dāng)中的解題思路。以題型為主線的復(fù)習(xí)方式有以下三點(diǎn)優(yōu)勢(shì):

第一,可以將零散的知識(shí)點(diǎn)從題型的角度進(jìn)行二次深入的梳理,把知識(shí)認(rèn)知階段進(jìn)化為知識(shí)應(yīng)用階段,達(dá)到高考要求。

第二,題型為主線可以簡(jiǎn)化思維過(guò)程,頭腦中不再是孤零零的點(diǎn),而是形成模塊化的解題套路。

第三,掌握相應(yīng)知識(shí)的??碱}型比起簡(jiǎn)單掌握知識(shí)點(diǎn)能夠更快更大幅度地在考試中提高分?jǐn)?shù)。很多考生溺死在浩如煙海的知識(shí)點(diǎn)當(dāng)中,盡管花了相當(dāng)多的時(shí)間和精力,但是收效甚微,甚至由此認(rèn)為高中數(shù)學(xué)很難學(xué)。如果能夠轉(zhuǎn)變一下復(fù)習(xí)思路,相信一定可以柳暗花明。


高考數(shù)學(xué)常用三角函數(shù)公式總結(jié)相關(guān)文章:

高考數(shù)學(xué)三角函數(shù)公式口訣

高考數(shù)學(xué)常用的誘導(dǎo)公式總結(jié)

高中數(shù)學(xué)必修四三角函數(shù)萬(wàn)能公式歸納

三角函數(shù)的公式歸納總結(jié)

必修四數(shù)學(xué)三角函數(shù)公式匯總

高中數(shù)學(xué)三角函數(shù)高考題匯編

高考數(shù)學(xué)??贾R(shí)點(diǎn)總結(jié)

2020高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全

高一數(shù)學(xué)必背公式及知識(shí)匯總

高考數(shù)學(xué)復(fù)合函數(shù)知識(shí)點(diǎn)歸納

460317