高三年級數(shù)學(xué)知識點整理
真正的夢想,永遠(yuǎn)在實現(xiàn)之中,更在堅持之中。高考即將來臨,再堅持一會,你就到達勝利的彼岸了,下面是小編為大家精心整理的高三數(shù)學(xué)知識點,歡迎大家閱讀分享!
高三年級數(shù)學(xué)知識點整理
三角函數(shù)。注意歸一公式、誘導(dǎo)公式的正確性
數(shù)列題。1.證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;2.最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;3.證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單
立體幾何題1.證明線面位置關(guān)系,一般不需要去建系,更簡單;2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。
概率問題。1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);2.搞清是什么概率模型,套用哪個公式;3.記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;4.求概率時,正難則反(根據(jù)p1+p2+...+pn=1);5.注意計數(shù)時利用列舉、樹圖等基本方法;6.注意放回抽樣,不放回抽樣;
高三數(shù)學(xué)知識點歸納
1.不等式的定義
在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.
2.比較兩個實數(shù)的大小
兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,
有a-b>0?;a-b=0?;a-b<0?.
另外,若b>0,則有>1?;=1?;<1?.
概括為:作差法,作商法,中間量法等.
3.不等式的性質(zhì)
(1)對稱性:a>b?;
(2)傳遞性:a>b,b>c?;
(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
(5)可乘方:a>b>0?(n∈N,n≥2);
(6)可開方:a>b>0?(n∈N,n≥2).
高三數(shù)學(xué)知識點復(fù)習(xí)資料
1.“一個技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進行因式分解或配方.
2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標(biāo)式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.
3.“兩條常用性質(zhì)”
(1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0
③a>b>0,0;④0
(2)若a>b>0,m>0,則
①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);
②假分?jǐn)?shù)的性質(zhì):>;<(b-m>0).
高三年級數(shù)學(xué)知識點整理總結(jié)相關(guān)文章:
1.高三年級數(shù)學(xué)知識點整理總結(jié)
2.高三年級數(shù)學(xué)易錯知識點復(fù)習(xí)總結(jié)
3.高三年級數(shù)學(xué)必背知識點小結(jié)
5.高三數(shù)學(xué)必考知識點復(fù)習(xí)總結(jié)
8.高三年級數(shù)學(xué)必修三知識點學(xué)習(xí)總結(jié)