高考數(shù)學知識點及公式和備考技巧
高考在即,相信有很多的同學想知道,高考數(shù)學必備知識點及公式有哪些,以下是小編準備的一些高考數(shù)學知識點及公式和備考技巧,僅供參考。
高考數(shù)學必考知識點
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a-邊長,S=6a2,V=a3
4、長方體
a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面積h-高V=Sh
6、棱錐
S-底面積h-高V=Sh/3
7、棱臺
S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1-上底面積,S2-下底面積,S0-中截面積
h-高,V=h(S1+S2+4S0)/6
9、圓柱
r-底半徑,h-高,C—底面周長
S底—底面積,S側—側面積,S表—表面積C=2πr
S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
11、直圓錐
r-底半徑h-高V=πr^2h/3
12、圓臺
r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3
13、球
r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺
r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體
R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑
V=2π2Rr2=π2Dd2/4
17、桶狀體
D-桶腹直徑d-桶底直徑h-桶高
V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
高中數(shù)學有哪些必備知識點
1.對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。
中元素各表示什么?
注重借助于數(shù)軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。
3.注意下列性質(zhì):
(3)德摩根定律:
4.你會用補集思想解決問題嗎?(排除法、間接法)
的取值范圍。
6.命題的四種形式及其相互關系是什么?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7.對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
8.函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?
(定義域、對應法則、值域)
9.求函數(shù)的定義域有哪些常見類型?
10.如何求復合函數(shù)的定義域?
義域是_____________。
11.求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎?
12.反函數(shù)存在的條件是什么?
(一一對應函數(shù))
求反函數(shù)的步驟掌握了嗎?
(①反解x;②互換x、y;③注明定義域)
13.反函數(shù)的性質(zhì)有哪些?
①互為反函數(shù)的圖象關于直線y=x對稱;
②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;
14.如何用定義證明函數(shù)的單調(diào)性?
(取值、作差、判正負)
如何判斷復合函數(shù)的單調(diào)性?
∴……)
15.如何利用導數(shù)判斷函數(shù)的單調(diào)性?
值是()
A.0B.1C.2D.3
∴a的最大值為3)
16.函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?
(f(x)定義域關于原點對稱)
注意如下結論:
(1)在公共定義域內(nèi):兩個奇函數(shù)的乘積是偶函數(shù);兩個偶函數(shù)的乘積是偶函數(shù);一個偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。
17.你熟悉周期函數(shù)的定義嗎?
函數(shù),T是一個周期。)
如:
18.你掌握常用的圖象變換了嗎?
注意如下“翻折”變換:
19.你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?
的雙曲線。
應用:①“三個二次”(二次函數(shù)、二次方程、二次不等式)的關系——二次方程
②求閉區(qū)間[m,n]上的最值。
③求區(qū)間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。
由圖象記性質(zhì)!(注意底數(shù)的限定!)
利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?
20.你在基本運算上常出現(xiàn)錯誤嗎?
21.如何解抽象函數(shù)問題?
(賦值法、結構變換法)
22.掌握求函數(shù)值域的常用方法了嗎?
(二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導數(shù)法等。)
如求下列函數(shù)的最值:
23.你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?
24.熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義
25.你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對稱點、對稱軸嗎?
(x,y)作圖象。
27.在三角函數(shù)中求一個角時要注意兩個方面——先求出某一個三角函數(shù)值,再判定角的范圍。
28.在解含有正、余弦函數(shù)的問題時,你注意(到)運用函數(shù)的有界性了嗎?
29.熟練掌握三角函數(shù)圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:
圖象?
30.熟練掌握同角三角函數(shù)關系和誘導公式了嗎?
“奇”、“偶”指k取奇、偶數(shù)。
A.正值或負值B.負值C.非負值D.正值
31.熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?
理解公式之間的聯(lián)系:
應用以上公式對三角函數(shù)式化簡。(化簡要求:項數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)
具體方法:
(2)名的變換:化弦或化切
(3)次數(shù)的變換:升、降冪公式
(4)形的變換:統(tǒng)一函數(shù)形式,注意運用代數(shù)運算。
32.正、余弦定理的各種表達形式你還記得嗎?如何實現(xiàn)邊、角轉化,而解斜三角形?
(應用:已知兩邊一夾角求第三邊;已知三邊求角。)
33.用反三角函數(shù)表示角時要注意角的范圍。
34.不等式的性質(zhì)有哪些?
答案:C
35.利用均值不等式:
值?(一正、二定、三相等)
注意如下結論:
36.不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數(shù)學歸納法等)
并注意簡單放縮法的應用。
(移項通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結果。)
38.用“穿軸法”解高次不等式——“奇穿,偶切”,從最大根的右上方開始
39.解含有參數(shù)的不等式要注意對字母參數(shù)的討論
40.對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最后取各段的并集。)
證明:
(按不等號方向放縮)
42.不等式恒成立問題,常用的處理方式是什么?(可轉化為最值問題,或“△”問題)
43.等差數(shù)列的定義與性質(zhì)
0的二次函數(shù))
項,即:
44.等比數(shù)列的定義與性質(zhì)
46.你熟悉求數(shù)列通項公式的常用方法嗎?
例如:(1)求差(商)法
解:
[練習]
(2)疊乘法
解:
(3)等差型遞推公式
[練習]
(4)等比型遞推公式
[練習]
(5)倒數(shù)法
47.你熟悉求數(shù)列前n項和的常用方法嗎?
例如:(1)裂項法:把數(shù)列各項拆成兩項或多項之和,使之出現(xiàn)成對互為相反數(shù)的項。
解:
[練習]
(2)錯位相減法:
(3)倒序相加法:把數(shù)列的各項順序倒寫,再與原來順序的數(shù)列相加。
[練習]
48.你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期后,本利和為:
△若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)
若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那么每期應還x元,滿足
p——貸款數(shù),r——利率,n——還款期數(shù)
49.解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。
(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一
(3)組合:從n個不同元素中任取m(m≤n)個元素并組成一組,叫做從n個不
50.解排列與組合問題的規(guī)律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時可以逐一排出結果。
如:學號為1,2,3,4的四名學生的考試成績
則這四位同學考試成績的所有可能情況是()
A.24B.15C.12D.10
解析:可分成兩類:
(2)中間兩個分數(shù)相等
相同兩數(shù)分別取90,91,92,對應的排列可以數(shù)出來,分別有3,4,3種,∴有10種。
∴共有5+10=15(種)情況
51.二項式定理
性質(zhì):
(3)最值:n為偶數(shù)時,n+1為奇數(shù),中間一項的二項式系數(shù)最大且為第
表示)
52.你對隨機事件之間的關系熟悉嗎?
的和(并)。
(5)互斥事件(互不相容事件):“A與B不能同時發(fā)生”叫做A、B互斥。
(6)對立事件(互逆事件):
(7)獨立事件:A發(fā)生與否對B發(fā)生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。
53.對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即
(5)如果在一次試驗中A發(fā)生的概率是p,那么在n次獨立重復試驗中A恰好發(fā)生
如:設10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;
(2)從中任取5件恰有2件次品;
(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品為“恰有2次品”和“三件都是次品”
(4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)
分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。
54.抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數(shù)表法)常常用于總體個數(shù)較少時,它的特征是從總體中逐個抽取;系統(tǒng)抽樣,常用于總體個數(shù)較多時,它的主要特征是均衡成若干部分,每部分只取一個;分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個個體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。
55.對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:
(2)決定組距和組數(shù);
(3)決定分點;
(4)列頻率分布表;
(5)畫頻率直方圖。
如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。
56.你對向量的有關概念清楚嗎?
(1)向量——既有大小又有方向的量。
在此規(guī)定下向量可以在平面(或空間)平行移動而不改變。
(6)并線向量(平行向量)——方向相同或相反的向量。
規(guī)定零向量與任意向量平行。
(7)向量的加、減法如圖:
(8)平面向量基本定理(向量的分解定理)
的一組基底。
(9)向量的坐標表示
表示。
57.平面向量的數(shù)量積
數(shù)量積的幾何意義:
(2)數(shù)量積的運算法則
高考數(shù)學六個大題題型是什么
1、三角函數(shù)、向量、解三角形
(1)三角函數(shù)畫圖、性質(zhì)、三角恒等變換、和與差公式。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)綜合題、三角題一般用平面向量進行“包裝”,講究知識的交匯性,或?qū)⑷呛瘮?shù)與解三角形有機融合。
重視三角恒等變換下的性質(zhì)探究,重視考查圖形圖像的變換。
2、概率與統(tǒng)計
(1)古典概型。
(2)莖葉圖。
(3)直方圖。
(4)回歸方程。
(5)(理)概率分布、期望、方差、排列組合。概率題貼近生活、貼近實際,考查等可能 性事件、互斥事件、獨立事件的概率計算公 式,難度不算很大。
3、立體幾何
(1)平行。
(2)垂直。
(3)角。
(4)利用三視圖計算面積與體積。
(5)既可以用傳統(tǒng)的幾何法,也可以建立空間直角坐標系,利用法向量等。
4、數(shù)列
(1)等差數(shù)列、等比數(shù)列、遞推數(shù)列是考查的熱點,數(shù)列通項、數(shù)列前n項的和以及二者之間的關系。
(2)文理科的區(qū)別較大,理科多出現(xiàn)在壓軸題位置的卷型,理科注重數(shù)學歸納法。
(3)錯位相減法、裂項求和法。
(4)應用題。
5、圓錐曲線(橢圓)與圓
(1)橢圓為主線,強調(diào)圓錐曲線與直線的位置關系,突出韋達定理或差值法。
(2)圓的方程,圓與直線的位置關系。
(3)注重橢圓與圓、橢圓與拋物線等的組合題。
6、函數(shù)、導數(shù)與不等式
(1)函數(shù)是該題型的主體:三次函數(shù),指數(shù)函數(shù),對數(shù)函數(shù)及其復合函數(shù)。
(2)函數(shù)是考查的核心內(nèi)容,與導數(shù)結合,基本題型是判斷函數(shù)的單調(diào)性,求函數(shù)的最 值(極值),求曲線的切線方程,對參數(shù)取值范 圍、根的分布的探求,對參數(shù)的分 類討論以及代數(shù)推理等等。
(3)利用基本不等式、對勾函數(shù)性質(zhì)。
高考數(shù)學答題方法有什么
1、時間分配
高考數(shù)學就是在120分鐘內(nèi)搶150分的問題,合理的時間分配與安排,對分數(shù)的提升會有很大幫助,可以把時間分成4個30分鐘,第一個30分鐘搞定選擇填空(允許留下2道選擇+2道填空)。
高考數(shù)學考試第二個30分鐘做完大題(允許留下1道大題+2道題目的第二問),第三個30分鐘再回頭攻克剛剛留下的題目(這個時間可以保持在30-45分鐘),最后30分鐘或者15分鐘檢查。
2、養(yǎng)成檢查的好習慣
高考數(shù)學做完題目再進行檢查和驗算,可以有效地提高我們的答題正確性,但是絕大部分同學都沒有養(yǎng)成這個習慣。相對而言學霸基本都會進行檢查和驗算。
尤其是簡單的高考數(shù)學問題,可能會因為粗心導致細節(jié)性的小錯誤,高考數(shù)學做題后檢查也是為了避免做題的時候,出現(xiàn)錯誤而自己不知道,這也是最后的一個保障。
3、提高效率不等于提高速度
高考數(shù)學最重要的是準確率,提高的應該是做題效率,而不是一味的提升做題速度,所以雖然時間很重要,但是不能因為節(jié)省時間就在高考數(shù)學審題和答題上扣時間。
這樣只會在高考數(shù)學審題的時候不夠仔細,導致我們粗心大意,在高考數(shù)學細節(jié)上出現(xiàn)一些錯誤,須知細節(jié)決定成敗,所以我們答題要先確保準確率,再來想著如何提高速度。