怎樣學好高三數(shù)學
怎樣學好高三數(shù)學及知識點整理
數(shù)學必須聽老師講課,老師的每一堂課,都必須認真聽,不能做其他,也不能自學,老師的講課肯定比你自己自學強太多,以下是小編整理的怎樣學好高三數(shù)學,希望可以提供給大家進行參考和借鑒。
怎樣學好高三數(shù)學
1、做題后加強反思
高三學生一定要明確一點,就是現(xiàn)在正在做的題,一定不是考試的題。所以高三學生做題不是目的,學會運用數(shù)學題目的解題思路和方法才是正道。因此,高三學生對于每道題都要加以反思。
2、主動復習總結
高三學生想要學好數(shù)學,進行章節(jié)總結是非常重要的。在初中的時候,都是教師替學生做總結;但是到了高中之后,就需要學生自己來做了。所以高三學生需要自己常總結,主動復習。
高三數(shù)學知識點整理
一個推導
利用錯位相減法推導等比數(shù)列的前n項和:Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
兩個防范
(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.
(2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.
三種方法
等比數(shù)列的判斷方法有:
(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_),則{an}是等比數(shù)列.
(2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_),則數(shù)列{an}是等比數(shù)列.
(3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_),則{an}是等比數(shù)列.
注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列
怎么復習高考數(shù)學
1.回歸課本,鞏固基礎:高考倒計時是回歸課本的時候了,不要把課本丟下,著重看課本上的公式、理論、定理,學會變換,把基礎打牢了自然能舉一反三,靈活運用。
2.避免題海戰(zhàn)術:對于一看就會的題型直接pass掉,做精題,精做題。不要什么都做沒有選擇,沒有計劃,如果每一題都做不僅會浪費時間而且也提高不了多少。
3.不專注于難題:不會的題不要一個人在那死扣,如果一道題你看了20分鐘都沒有思路,無從下手,要么請教高手要么放棄,不要專注于難題。盡量做一些看起來會但是不能全面做出來的題,克服會而做不對,對而做不全,這樣提升空間比較大。
4.各類題的解題方法:不同的題型有不同的解題方法,要善于歸納和整理。要選擇填空題可以選擇排除法、帶進去驗證、直覺、數(shù)形結合的方法。簡單的題答得時候盡量要全面。壓軸題,選擇、填空、答題都各自的壓軸題,會做就做不會做就暫時放棄,先把會的題做出來后再回過頭看。
5.訓練考試意境:把每次訓練都當做高考,數(shù)學的復習離不開做題,但是做題量不能太大,做題的時候更應該模擬高考的時間和場景,下午三點到五點考數(shù)學,所以在復習的時候也在這個時間做題,適應高考模式。
高三數(shù)學太差怎么提高成績
一、看課本補基礎
基礎很差,那就不要總想著有什么捷徑,不要給自己找理由去偷懶,積累的過程從來就沒有捷徑,看課本補上基礎,是一個緩慢但卻最實際最靠譜的方法,特別是高三第一輪復習的時候,對于概念,公式,如何推導公式等一定要重點弄懂,還有每個知識點后面的例題,至于有同學會問那些課后習題需要做么?我覺得應該沒有那么多時間,而且那些針對性也不強,畢竟有些必修課本是面向全部學生,沒有分文理科的。
二、跟著老師步驟去看課本補基礎
在第一輪復習的時候,很多同學會覺得很多知識點都不懂并且還會有不知從哪里去看課本好,這時老師復習節(jié)奏很重要,你就不要自己計劃今天要復習課本哪里,第一輪復習可以跟著老師步驟,老師講到哪,就去看這部分知識點的內容,具體按照上一步驟。
高三數(shù)學知識點歸納整理
復數(shù)的概念:
形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母C表示。
復數(shù)的表示:
復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。
復數(shù)的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復數(shù)的幾何意義:復數(shù)集C和復平面內所有的點所成的集合是一一對應關系,即
這是因為,每一個復數(shù)有復平面內惟一的一個點和它對應;反過來,復平面內的每一個點,有惟一的一個復數(shù)和它對應。
這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。
復數(shù)的模:
復數(shù)z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數(shù)模的性質:
復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關系:
對于復數(shù)a+bi(a、b∈R),當且僅當b=0時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。