高三數(shù)學(xué)重要知識(shí)點(diǎn)框架整合
與高一高二不同之處在于,此時(shí)復(fù)習(xí)力學(xué)部分知識(shí)是為了更好的與高考考綱相結(jié)合,尤其水平中等或中等偏下的學(xué)生,此時(shí)需要進(jìn)行查漏補(bǔ)缺,但也需要同時(shí)提升能力,填補(bǔ)知識(shí)、技能的空白。下面是小編給大家?guī)?lái)的高三數(shù)學(xué)重要知識(shí)點(diǎn)框架整合,以供大家參考!
高三數(shù)學(xué)重要知識(shí)點(diǎn)框架整合
1、函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(—x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;
(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2、復(fù)合函數(shù)的有關(guān)問(wèn)題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3、函數(shù)圖像(或方程曲線的對(duì)稱性)
(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;
(2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=—x+a)的對(duì)稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a—x,2b—y)=0;
(5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a—x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;
(6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關(guān)于直線x=對(duì)稱;
4、函數(shù)的周期性
(1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2|a|的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4|a|的周期函數(shù);
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對(duì)x∈R時(shí),f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5、方程k=f(x)有解k∈D(D為f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號(hào)由口訣“同正異負(fù)”記憶;
(4)alogaN=N(a>0,a≠1,N>0);
8、判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):
(1)A中元素必須都有象且;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10、對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);
(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;
(6)y=f(x)與y=f—1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A);
11、處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合:二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;
12、依據(jù)單調(diào)性:利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問(wèn)題;
13、恒成立問(wèn)題的處理方法
(1)分離參數(shù)法;
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;
高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)
(1)先看“充分條件和必要條件”
當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
但為什么說(shuō)q是p的必要條件呢?
事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說(shuō),q對(duì)于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱為p是q的充要條件。記作p<=>q
(3)定義與充要條件
數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說(shuō),一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。
顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語(yǔ)句來(lái)表示。
“充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來(lái)表示,其中“當(dāng)”表示“充分”。“僅當(dāng)”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
高三數(shù)學(xué)專題復(fù)習(xí)知識(shí)點(diǎn)大全
(1)先看“充分條件和必要條件”
當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
但為什么說(shuō)q是p的必要條件呢?
事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說(shuō),q對(duì)于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱為p是q的充要條件。記作p<=>q
回憶一下初中學(xué)過(guò)的“等價(jià)于”這一概念;如果從命題A成立可以推出命題B成立,反過(guò)來(lái),從命題B成立也可以推出命題A成立,那么稱A等價(jià)于B,記作A<=>B?!俺湟獥l件”的含義,實(shí)際上與“等價(jià)于”的含義完全相同。也就是說(shuō),如果命題A等價(jià)于命題B,那么我們說(shuō)命題A成立的充要條件是命題B成立;同時(shí)有命題B成立的充要條件是命題A成立。
(3)定義與充要條件
數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說(shuō),一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。
顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語(yǔ)句來(lái)表示。
“充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來(lái)表示,其中“當(dāng)”表示“充分”?!皟H當(dāng)”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
高三數(shù)學(xué)重要知識(shí)點(diǎn)框架整合相關(guān)文章:
★ 高三數(shù)學(xué)復(fù)習(xí)計(jì)劃范文2020
★ 高三數(shù)學(xué)的復(fù)習(xí)計(jì)劃范文
★ 教師個(gè)人的實(shí)習(xí)情況總結(jié)報(bào)告10篇