特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

高三數(shù)學(xué)必修三第二單元的知識點解析

時間: 贊銳20 分享

在學(xué)習(xí)上我們要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復(fù)習(xí),消化,思考。建好錯題檔案,做好查漏補缺。以下是小編給大家整理的高三數(shù)學(xué)必修三第二單元的知識點解析,希望大家能夠喜歡!

高三數(shù)學(xué)必修三第二單元的知識點解析1

1.進(jìn)行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.

2.在應(yīng)用條件時,易A忽略是空集的情況

3.你會用補集的思想解決有關(guān)問題嗎?

4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

5.你知道“否命題”與“命題的否定形式”的區(qū)別.

6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.

7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關(guān)于原點對稱.

8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標(biāo)注該函數(shù)的定義域.

9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)

10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法

11.求函數(shù)單調(diào)性時,易錯誤地在多個單調(diào)區(qū)間之間添加符號“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.

12.求函數(shù)的值域必須先求函數(shù)的定義域。

13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?

14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?

(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

15.三個二次(哪三個二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。

17.“實系數(shù)一元二次方程有實數(shù)解”轉(zhuǎn)化時,你是否注意到:當(dāng)時,“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?

18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.

19.絕對值不等式的解法及其幾何意義是什么?

20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?

21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

22.在求不等式的解集、定義域及值域時,其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.

23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.

24.解決一些等比數(shù)列的前項和問題,你注意到要對公比及兩種情況進(jìn)行討論了嗎?

25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應(yīng)有)需要驗證,有些題目通項是分段函數(shù)。

26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項和與所有項的和的不同嗎?什么樣的無窮等比數(shù)列的所有項的和必定存在?

27.數(shù)列單調(diào)性問題能否等同于對應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時成立,再結(jié)合一些數(shù)學(xué)方法用來證明時也成立。

29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

31.在解三角問題時,你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)

33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是

34.你還記得某些特殊角的三角函數(shù)值嗎?

35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會寫三角函數(shù)的單調(diào)區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:

(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.

(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.

(3)點的平移公式:點P(x,y)按向量平移到點P(x,y),則x=x+hy=y+k.

37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)

38.形如的周期都是,但的周期為。

39.正弦定理時易忘比值還等于2R。

高三數(shù)學(xué)必修三第二單元的知識點解析2

一個推導(dǎo)

利用錯位相減法推導(dǎo)等比數(shù)列的前n項和:

Sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

兩個防范

(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

(2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

三種方法

等比數(shù)列的判斷方法有:

(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_),則{an}是等比數(shù)列.

(2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_),則數(shù)列{an}是等比數(shù)列.

(3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_),則{an}是等比數(shù)列.

注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列.

高三數(shù)學(xué)必修三第二單元的知識點解析3

①正棱錐各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

②正棱錐的高、斜高和斜高在底面內(nèi)的射影組成一個直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個直角三角形.

⑶特殊棱錐的頂點在底面的射影位置:

①棱錐的側(cè)棱長均相等,則頂點在底面上的射影為底面多邊形的外心.

②棱錐的側(cè)棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.

③棱錐的各側(cè)面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內(nèi)心.

⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.

⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.

⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;

⑧每個四面體都有內(nèi)切球,球心

是四面體各個二面角的平分面的交點,到各面的距離等于半徑.

[注]:i.各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側(cè)面的等腰三角形不知是否全等)

ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.

簡證:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知則.

iii.空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形.

iv.若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形.

簡證:取AC中點,則平面90°易知EFGH為平行四邊形

EFGH為長方形.若對角線等,則為正方形.


高三數(shù)學(xué)必修三第二單元的知識點解析相關(guān)文章:

高二數(shù)學(xué)必修三第二章復(fù)習(xí)要點

高三年級數(shù)學(xué)必修三知識點

高三數(shù)學(xué)必修三知識點總復(fù)習(xí)資料

高中數(shù)學(xué)必修三重點知識點復(fù)習(xí)

高中數(shù)學(xué)必修三算法初步知識點講解

高中必修三數(shù)學(xué)知識點

高中數(shù)學(xué)必修三知識點歸納總結(jié)

高中數(shù)學(xué)必修3隨機抽樣知識點

高中數(shù)學(xué)必修三知識點總結(jié)

高二數(shù)學(xué)必修三知識點總結(jié)

1071603