特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

高三數(shù)學(xué)第二輪復(fù)習(xí)知識(shí)點(diǎn)分析

時(shí)間: 贊銳20 分享

中學(xué)數(shù)學(xué)研究的對(duì)象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。能讓我們正確地理解題意、快速地解決問題。以下是小編給大家整理的高三數(shù)學(xué)第二輪復(fù)習(xí)知識(shí)點(diǎn)分析,希望能幫助到你!

高三數(shù)學(xué)第二輪復(fù)習(xí)知識(shí)點(diǎn)分析1

1.對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么f(x)為奇函數(shù);

2.對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么f(x)為偶函數(shù);

3.一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x,都有f(a+x)=2b-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱;

4.一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x都有f(a+x)=f(a-x),則它的圖象關(guān)于x=a成軸對(duì)稱。

5.函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

6.由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).

高三數(shù)學(xué)第二輪復(fù)習(xí)知識(shí)點(diǎn)分析2

1.函數(shù)的奇偶性

(1)若f(x)是偶函數(shù),那么f(x)=f(-x);

(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2.復(fù)合函數(shù)的有關(guān)問題

(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

3.函數(shù)圖像(或方程曲線的對(duì)稱性)

(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

(2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;

(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

4.函數(shù)的周期性

(1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);

(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);

(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);

(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

(6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

5.方程k=f(x)有解k∈D(D為f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

(4)alogaN=N(a>0,a≠1,N>0);

8.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

(1)A中元素必須都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

(1)定義域上的單調(diào)函數(shù)必有反函數(shù);

(2)奇函數(shù)的反函數(shù)也是奇函數(shù);

(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

(4)周期函數(shù)不存在反函數(shù);

(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合

二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系;

12.依據(jù)單調(diào)性

利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題;

13.恒成立問題的處理方法

(1)分離參數(shù)法;

(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

高三數(shù)學(xué)第二輪復(fù)習(xí)知識(shí)點(diǎn)分析3

隨機(jī)抽樣

簡(jiǎn)介

(抽簽法、隨機(jī)樣數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的主要特征是從總體中逐個(gè)抽取;

優(yōu)點(diǎn):操作簡(jiǎn)便易行

缺點(diǎn):總體過大不易實(shí)行

方法

(1)抽簽法

一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號(hào),把號(hào)碼寫在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本。

(抽簽法簡(jiǎn)單易行,適用于總體中的個(gè)數(shù)不多時(shí)。當(dāng)總體中的個(gè)體數(shù)較多時(shí),將總體“攪拌均勻”就比較困難,用抽簽法產(chǎn)生的樣本代表性差的可能性很大)

(2)隨機(jī)數(shù)法

隨機(jī)抽樣中,另一個(gè)經(jīng)常被采用的方法是隨機(jī)數(shù)法,即利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣。

分層抽樣

簡(jiǎn)介

分層抽樣主要特征分層按比例抽樣,主要使用于總體中的個(gè)體有明顯差異。共同點(diǎn):每個(gè)個(gè)體被抽到的概率都相等N/M。

定義

一般地,在抽樣時(shí),將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,將各層取出的個(gè)體合在一起作為樣本,這種抽樣方法是一種分層抽樣。

整群抽樣

定義

什么是整群抽樣

整群抽樣又稱聚類抽樣。是將總體中各單位歸并成若干個(gè)互不交叉、互不重復(fù)的集合,稱之為群;然后以群為抽樣單位抽取樣本的一種抽樣方式。

應(yīng)用整群抽樣時(shí),要求各群有較好的代表性,即群內(nèi)各單位的差異要大,群間差異要小。

優(yōu)缺點(diǎn)

整群抽樣的優(yōu)點(diǎn)是實(shí)施方便、節(jié)省經(jīng)費(fèi);

整群抽樣的缺點(diǎn)是往往由于不同群之間的差異較大,由此而引起的抽樣誤差往往大于簡(jiǎn)單隨機(jī)抽樣。

實(shí)施步驟

先將總體分為i個(gè)群,然后從i個(gè)群鐘隨即抽取若干個(gè)群,對(duì)這些群內(nèi)所有個(gè)體或單元均進(jìn)行調(diào)查。抽樣過程可分為以下幾個(gè)步驟:

一、確定分群的標(biāo)注

二、總體(N)分成若干個(gè)互不重疊的部分,每個(gè)部分為一群。

三、據(jù)各樣本量,確定應(yīng)該抽取的群數(shù)。

四、采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣方法,從i群中抽取確定的群數(shù)。

例如,調(diào)查中學(xué)生患近視眼的情況,抽某一個(gè)班做統(tǒng)計(jì);進(jìn)行產(chǎn)品檢驗(yàn);每隔8h抽1h生產(chǎn)的全部產(chǎn)品進(jìn)行檢驗(yàn)等。

與分層抽樣的區(qū)別

整群抽樣與分層抽樣在形式上有相似之處,但實(shí)際上差別很大。

分層抽樣要求各層之間的差異很大,層內(nèi)個(gè)體或單元差異小,而整群抽樣要求群與群之間的差異比較小,群內(nèi)個(gè)體或單元差異大;

分層抽樣的樣本是從每個(gè)層內(nèi)抽取若干單元或個(gè)體構(gòu)成,而整群抽樣則是要么整群抽取,要么整群不被抽取。

系統(tǒng)抽樣

定義

當(dāng)總體中的個(gè)體數(shù)較多時(shí),采用簡(jiǎn)單隨機(jī)抽樣顯得較為費(fèi)事。這時(shí),可將總體分成均衡的幾個(gè)部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。

步驟

一般地,假設(shè)要從容量為N的總體中抽取容量為n的樣本,我們可以按下列步驟進(jìn)行系統(tǒng)抽樣:

(1)先將總體的N個(gè)個(gè)體編號(hào)。有時(shí)可直接利用個(gè)體自身所帶的號(hào)碼,如學(xué)號(hào)、準(zhǔn)考證號(hào)、門牌號(hào)等;

(2)確定分段間隔k,對(duì)編號(hào)進(jìn)行分段。當(dāng)N/n(n是樣本容量)是整數(shù)時(shí),取k=N/n;

(3)在第一段用簡(jiǎn)單隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào)l(l≤k);

(4)按照一定的規(guī)則抽取樣本。通常是將l加上間隔k得到第2個(gè)個(gè)體編號(hào)(l+k),再加k得到第3個(gè)個(gè)體編號(hào)(l+2k),依次進(jìn)行下去,直到獲取整個(gè)樣本。

高三數(shù)學(xué)第二輪復(fù)習(xí)知識(shí)點(diǎn)分析相關(guān)文章:

2020高三數(shù)學(xué)第二輪復(fù)習(xí)方法及策略

高三數(shù)學(xué)第二輪的復(fù)習(xí)策略指導(dǎo)

高三數(shù)學(xué)復(fù)習(xí)計(jì)劃第二輪復(fù)習(xí)

高三數(shù)學(xué)第二輪復(fù)習(xí)計(jì)劃指導(dǎo)

高三數(shù)學(xué)二輪復(fù)習(xí)問題一及一輪復(fù)習(xí)有效策略

數(shù)學(xué)二輪復(fù)習(xí)策略與重點(diǎn)

2020高三二輪數(shù)學(xué)具體的復(fù)習(xí)方法

高三數(shù)學(xué)二輪如何高效復(fù)習(xí)

高三數(shù)學(xué)二輪總復(fù)習(xí)計(jì)劃匯總

高三數(shù)學(xué)二輪復(fù)習(xí)方法

1071059