高三學年數(shù)學的全套知識點概括
即使是復習過的內容仍須定期鞏固,但是復習的次數(shù)應隨時間的增長而逐步減小,間隔也可以逐漸拉長??梢援斕祆柟绦轮R,每周進行周小結,每月進行階段性總結,期中、期末進行全面系統(tǒng)的學期復習。以下是小編給大家整理的高三學年數(shù)學的全套知識點概括,希望大家能夠喜歡!
高三學年數(shù)學的全套知識點概括1
1、直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
2、直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點的直線的斜率公式:
注意下面四點:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
3、直線方程
點斜式:
直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。
高三學年數(shù)學的全套知識點概括2
一、函數(shù)的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開方數(shù)大于等于零;
3、對數(shù)的真數(shù)大于零;
4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;
5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;
6、如果函數(shù)是由實際意義確定的解析式,應依據(jù)自變量的實際意義確定其取值范圍。
二、函數(shù)的解析式的常用求法:
1、定義法;
2、換元法;
3、待定系數(shù)法;
4、函數(shù)方程法;
5、參數(shù)法;
6、配方法
三、函數(shù)的值域的常用求法:
1、換元法;
2、配方法;
3、判別式法;
4、幾何法;
5、不等式法;
6、單調性法;
7、直接法
四、函數(shù)的最值的常用求法:
1、配方法;
2、換元法;
3、不等式法;
4、幾何法;
5、單調性法
五、函數(shù)單調性的常用結論:
1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)。
2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。
3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調性不同,則f[g(x)]是減函數(shù)。
4、奇函數(shù)在對稱區(qū)間上的單調性相同,偶函數(shù)在對稱區(qū)間上的單調性相反。
5、常用函數(shù)的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。
六、函數(shù)奇偶性的常用結論:
1、如果一個奇函數(shù)在x=0處有定義,則f(0)=0,如果一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。
2、兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。
3、一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。
4、兩個函數(shù)y=f(u)和u=g(x)復合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復合函數(shù)就是偶函數(shù);當兩個函數(shù)都是奇函數(shù)時,該復合函數(shù)是奇函數(shù)。
5、若函數(shù)f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數(shù)和一個偶函數(shù)的和。
高三學年數(shù)學的全套知識點概括3
1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點;
(2)判定定理--證明一個平面內的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
3.兩個平面平行的主要性質:
(1)由定義知:“兩平行平面沒有公共點”;
(2)由定義推得:“兩個平面平行,其中一個平面內的直線必平行于另一個平面”;
(3)兩個平面平行的性質定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
(5)夾在兩個平行平面間的平行線段相等;
(6)經(jīng)過平面外一點只有一個平面和已知平面平行。