高中數學四種思想方法
學習一門知識,究其核心,主要是學其思想和方法,這是學習的精髓。學數學亦如此,分學數學思想和數學方法。下面是小編為大家整理的關于高中數學四種思想方法,希望對您有所幫助。歡迎大家閱讀參考學習!
1高中數學四種思想方法
學習一門知識,究其核心,主要是學其思想和方法,這是學習的精髓。學數學亦如此,分學數學思想和數學方法。
2數形結合思想
數形結合思想在高考中占有非常重要的地位,其“數”與“形”結合,相互滲透,把代數式的精確刻劃與幾何圖形的直觀描述相結合,使代數問題、幾何問題相互轉化,使抽象思維和形象思維有機結合. 應用數形結合思想,就是充分考查數學問題的條件和結論之間的內在聯(lián)系,既分析其代數意義又揭示其幾何意義,將數量關系和空間形式巧妙結合,來尋找解題思路,使問題得到解決. 運用這一數學思想,要熟練掌握一 些概念和運算的幾何意義及常見曲線的代數特征.
應用數形結合的思想,應注意以下數與形的轉化:(1)集合的運算及韋恩圖;(2)函數及其圖象;(3)數 列通項及求和公式的函數特征及函數圖象;(4)方程(多指二元方程)及方程的曲線. 以形助數常用的有:借助數軸;借助函數圖象;借助單位圓;借助數式的結構特征;借助于解析幾何方法.以數助形常用的有:借助于幾何軌跡所遵循的數量關系;借助于運算結果與幾何定理的結合.
3轉化與化歸思想
化歸與轉化的思想,就是在研究和解決數學問題時采用某種方式,借助某種函數性質、圖象、公式或已知條件將,問題通過變換加以轉化,進而達到解決問題的思想. 轉化是將數學命題由一種形式向另一種形式的變換過程,化歸是把待解決的問題通過某種轉化過程歸結為一類已經解決或比較容易解決的問題. 轉 化與化歸思想是中學數學最基本的思想方法,堪稱數學思想的精髓,它滲透到了數學教學內容的各個領域和解 題過程的各個環(huán)節(jié)中. 轉化有等價轉化與不等價轉化. 等價轉化后的新問題與原問題實質是一樣的. 不等價轉 化則部分地改變了原對象的實質,需對所得結論進行必要的修正.
應用轉化與化歸思想解題的原則應是化難為易、化生為熟、化繁為簡,盡量是等價轉化. 常見的轉化有: 正與反的轉化、數與形的轉化、相等與不等的轉化、整體與局部的轉化、空間與平面相互轉化、復數與實數相互轉化、常量與變量的轉化、數學語言的轉化
4分類與整合思想
分類討論思想是對數學對象進行分類尋求解答的一種思想方法。分類的原則:分類不重不漏。分類的步驟:①確定討論的對象及其范圍;②確定分類討論的分類標準;③按所分類別進行討論;④歸納小結、綜合得出結論。分類討論問題的關鍵是化整為零,通過局部討論以降低難度。常見的類型: 由數學概念引起的的討論,如實數、有理數、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論;
由數學運算引起的討論,如不等式兩邊同乘一個正數還是負數的問題;由性質、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應用引起的討論;由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關問題引起的討論。由某些字母系數對方程的影響造成的分類討論,如二次函數中字母系數對圖象的影響,二次項系數對圖象開口方向的影響,一次項系數對頂點坐標的影響,常數項對截距的影響等。
5函數方程思想
函數方程思想就是用函數、方程的觀點和方法處理變量或未知數之間的關系,從而解決問題的一種思維方式,是很重要的數學思想。函數思想:把某變化過程中的一些相互制約的變量用函數關系表達出來,并研究這些量間的相互制約關系,最后解決問題,這就是函數思想;應用函數思想解題,確立變量之間的函數關系是一關鍵步驟
大體可分為下面兩個步驟:(1)根據題意建立變量之間的函數關系式,把問題轉化為相應的函數問題;(2)根據需要構造函數,利用函數的相關知識解決問題;(3)方程思想:在某變化過程中,往往需要根據一些要求,確定某些變量的值,這時常常列出這些變量的方程或(方程組),通過解方程(或方程組)求出它們,這就是方程思想;函數與方程是兩個有著密切聯(lián)系的數學概念,它們之間相互滲透,很多方程的問題需要用函數的知識和方法解決,很多函數的問題也需要用方程的方法的支援,函數與方程之間的辯證關系,形成了函數方程思想。
高中數學四種思想方法相關文章:
2.高中數學思想方法
6.高中數學巧妙方法
高中數學四種思想方法
上一篇:高中數學數列方法和技巧
下一篇:高中數學解題特殊方法