高考數(shù)學知識點總結
高中如何學好數(shù)學?在數(shù)學中有什么精華下面是小編為大家整理的關于高考數(shù)學知識點總結,希望對您有所幫助。歡迎大家閱讀參考學習!
高考數(shù)學知識點:集合與函數(shù)
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別.
6.求解與函數(shù)有關的問題易忽略定義域優(yōu)先的原則.
7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關于原點對稱.
8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域.
9.原函數(shù)在區(qū)間[-a,a]上單調遞增,則一定存在反函數(shù),且反函數(shù)也單調遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調.例如:.
10.你熟練地掌握了函數(shù)單調性的證明方法嗎?定義法(取值,作差,判正負)和導數(shù)法
11.求函數(shù)單調性時,易錯誤地在多個單調區(qū)間之間添加符號“∪”和“或”;單調區(qū)間不能用集合或不等式表示.
12.求函數(shù)的值域必須先求函數(shù)的定義域。
13.如何應用函數(shù)的單調性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應用你掌握了嗎?
14.解對數(shù)函數(shù)問題時,你注意到真數(shù)與底數(shù)的限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數(shù)求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數(shù)的范圍。
17.“實系數(shù)一元二次方程有實數(shù)解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項系數(shù)可能為的零的情形?
高考數(shù)學知識點:不等式
18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.
19.絕對值不等式的解法及其幾何意義是什么?
20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
21.解含參數(shù)不等式的通法是“定義域為前提,函數(shù)的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區(qū)間表示;不能用不等式表示.
23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.
高考數(shù)學知識點:軌跡
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).
【軌跡方程】就是與幾何軌跡對應的代數(shù)描述。
一、求動點的軌跡方程的基本步驟
?、苯⑦m當?shù)淖鴺讼?,設出動點M的坐標;
?、矊懗鳇cM的集合;
?、沉谐龇匠?0;
?、椿喎匠虨樽詈喰问?
?、禉z驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
?、捕x法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
?、诚嚓P點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
?、磪?shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
?、到卉壏ǎ簩蓜忧€方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
_直譯法:求動點軌跡方程的一般步驟
?、俳ㄏ?mdash;—建立適當?shù)淖鴺讼?
?、谠O點——設軌跡上的任一點P(x,y);
?、哿惺?mdash;—列出動點p所滿足的關系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
高考數(shù)學知識點總結
上一篇:高考歷史知識點大總結
下一篇:高考數(shù)學備考技巧