關于高考數(shù)學的答題技巧與方法
想要學好高中數(shù)學,考試中取得優(yōu)異的成績,就要掌握解題技巧。那么高考數(shù)學的答題技巧與方法有哪些呢?以下是小編整理的一些關于高考數(shù)學的答題技巧與方法,僅供參考。
高考數(shù)學答題套路整理
1、三角變換與三角函數(shù)的性質問題
解題方法:①不同角化同角;②降冪擴角;③化f(x)=Asin(ωx+φ)+h ;④結合性質求解。
答題步驟:
①化簡:三角函數(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質,寫出結果。
2、解三角形問題
解題方法:
(1) ①化簡變形;②用余弦定理轉化為邊的關系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
答題步驟:
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
②定工具:即根據(jù)條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
3、數(shù)列的通項、求和問題
解題方法:①先求某一項,或者找到數(shù)列的關系式;②求通項公式;③求數(shù)列和通式。
答題步驟:
①找遞推:根據(jù)已知條件確定數(shù)列相鄰兩項之間的關系,即找數(shù)列的遞推公式。
②求通項:根據(jù)數(shù)列遞推公式轉化為等差或等比數(shù)列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據(jù)數(shù)列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規(guī)范寫出求和步驟。
4、離散型隨機變量的均值與方差
解題思路:
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數(shù)學期望。
答題步驟:
①定元:根據(jù)已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據(jù)均值、方差公式求解其值。
高考數(shù)學答題竅門
1、高考數(shù)學答題審題要慢,答題要快
有些考生只知道一味求快,往往高考數(shù)學題意未清,便匆忙動筆,結果誤入歧途,即所謂欲速則不達,看錯一個字可能會遺憾終生,所以審題一定要慢,有了這個“慢”,才能形成完整的合理的解題策略,才有答題的“快”。
2、高考數(shù)學答題運算要準,膽子要大
高考數(shù)學沒有足夠的時間讓你反復驗算,更不容你一再地變換解題方法,往往是拿到一個題目,憑感覺選定一種方法就動手做,這時除了你的每一步運算務求正確外,還要求把你當時的解法堅持到底,也許你選擇的不是最好的方法,但如回頭重來將會花費更多的時間,當然堅持到底并不意味著鉆牛角尖,一旦發(fā)現(xiàn)自己走進死胡同,還是要立刻迷途知返。
3、高考數(shù)學答題先易后難,敢于放棄
能夠增強信心,使思維趨向,對發(fā)揮水平極為有利;另一方面如果先做高考數(shù)學難題,可能會浪費好多時間,即使難關被攻克,卻已沒有時間去得那些易得的分數(shù),所以關鍵時刻,敢于放棄,也是一種明智的選擇。有些解答題第一問就很難,這時可以先放棄第一問,而直接使用第一問的結論解決第2問、第3問。
4、高考數(shù)學答題先熟后生,合理用時
面對熟悉的高考數(shù)學題目,自然象吃了定心丸,做起來得心應手,會使你獲得好心情,并且可以在最短時間內完成,留下更多的時間來思考那些不熟悉的題目。有些題目需花很多時間卻只得到很少分數(shù),有些題目只要花很少時間卻有很高的分值。所以應先把時間用在那些較易題或分值較高題目上,最大限度地提高時間的利用率。
高考數(shù)學解題方法
1、剔除法
利用題目給出的已知條件和選項提供的信息,從四個選項中挑選出三個錯誤答案,從而達到正確答案的目的。在答案為定值的時候,這方法是比較常用的,或者利用數(shù)值范圍,取特殊點代入驗證答案。
2、特殊值檢驗法
對于具有一般性的選擇題,在答題過程中,可以將問題具體特殊化,利用問題在特殊情況下不真,則利用一般情況下不真這一原理,從而達到去偽存真的目的。
3、順推破解法
利用數(shù)學公式、法則、題意、定理和定義,通過直接演算推理得出答案的方法。
4、極端性原則
將所要解答的問題向極端狀態(tài)進行分析,使因果關系變得更加明朗,以達到迅速解決問題的目的。極端性多數(shù)應用在取值范圍、解析幾何和求極值上面,很多計算量大、計算步驟繁瑣的題,采用極端性去分析,可以瞬間解決問題。
5、直接法
直接法就是從題設條件出發(fā),通過正確推理、判斷或運算,直接得出結論,從而作出選擇的一種方法。用這種方法的學生往往數(shù)學基礎比較扎實。
6、估算法
就是把復雜的問題轉化為簡單的問題,估算出答案的近似值,或者把有關數(shù)值縮小或擴大,從而對運算結果作出一個估計或確定出一個范圍,達到作出判斷的效果。