2023高考數學重要知識點歸納
2023高考數學重要知識點歸納總結
高考是具備合格的高中畢業(yè)生或具有同等學歷的考生參加的選拔性考試。普通高等學校招生全國統一考試,以下是小編準備的2023高考數學重要知識點歸納,歡迎借鑒參考。
高考數學知識點及考點
考點一:集合與簡易邏輯
集合部分一般以選擇題出現,屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉換與化簡。簡易邏輯考查有兩種形式:
一是在選擇題和填空題中直接考查命題及其關系、邏輯聯結詞、“充要關系”、命題真?zhèn)蔚呐袛?、全稱命題和特稱命題的否定等,
二是在解答題中深層次考查常用邏輯用語表達數學解題過程和邏輯推理。
考點二:函數與導數
函數是高考的重點內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡單應用,如求函數的單調區(qū)間、極值與最值等,通常以客觀題的形式出現,屬于容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯系在一起以解答題的形式出現,如一些不等式恒成立問題、參數的取值范圍問題、方程根的個數問題、不等式的證明等問題。
考點三:三角函數與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點考查平面向量數量積的概念及應用,向量與直線、圓錐曲線、數列、不等式、三角函數等結合,解決角度、垂直、共線等問題是“新熱點”題型.
考點四:數列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進行考查.在選擇、填空題中考查等差或等比數列的概念、性質、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.
考點五:立體幾何與空間向量
一是考查空間幾何體的結構特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
考點六:解析幾何
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經常與平面向量、函數與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。
考點七:算法復數推理與證明
高考對算法的考查以選擇題或填空題的形式出現,或給解答題披層“外衣”.考查的熱點是流程圖的識別與算法語言的閱讀理解.算法與數列知識的網絡交匯命題是考查的主流.復數考查的重點是復數的有關概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數學歸納法可能作為解答題的一小問.
高考數學知識點歸納
一、集合與函數
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解。
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別。
6.求解與函數有關的問題易忽略定義域優(yōu)先的原則。
7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱。
8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域。
9.原函數在區(qū)間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調。例如:。
10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值, 作差, 判正負)和導數法
11. 求函數單調性時,易錯誤地在多個單調區(qū)間之間添加符號“∪”和“或”;單調區(qū)間不能用集合或不等式表示。
12.求函數的值域必須先求函數的定義域。
13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問題).這幾種基本應用你掌握了嗎?
14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?
(真數大于零,底數大于零且不等于1)字母底數還需討論
15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?
16.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍。
17.“實系數一元二次方程有實數解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?
二、不等式
1.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”。
2.絕對值不等式的解法及其幾何意義是什么?
3.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?
4.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
5. 在求不等式的解集、定義域及值域時,其結果一定要用集合或區(qū)間表示;不能用不等式表示。
6. 兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a
三、數列
1.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?
2.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。
3.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什么樣的無窮等比數列的所有項的和必定存在?
4.數列單調性問題能否等同于對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續(xù)的。)
5.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。
四、三角函數
1.正角、負角、零角、象限角的概念你清楚嗎,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
2.三角函數的定義及單位圓內的三角函數線(正弦線、余弦線、正切線)的定義你知道嗎?
3. 在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?
4. 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角。 異角化同角,異名化同名,高次化低次)
5. 反正弦、反余弦、反正切函數的取值范圍分別是
6.你還記得某些特殊角的三角函數值嗎?
7.掌握正弦函數、余弦函數及正切函數的圖象和性質。你會寫三角函數的單調區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規(guī)范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?
五、平面向量
1.數0有區(qū)別,的模為數0,它不是沒有方向,而是方向不定??梢钥闯膳c任意向量平行,但與任意向量都不垂直。
2數量積與兩個實數乘積的區(qū)別:
在實數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出。
已知實數,且,則a=c,但在向量的數量積中沒有。
在實數中有,但是在向量的數量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量。
3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
六、解析幾何
1.在用點斜式、斜截式求直線的方程時,你是否注意到不存在的情況?
2.用到角公式時,易將直線l1、l2的斜率k1、k2的順序弄顛倒。
3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。
4. 定比分點的坐標公式是什么?(起點,中點,分點以及值可要搞清),在利用定比分點解題時,你注意到了嗎?
5. 對不重合的兩條直線
(建議在解題時,討論后利用斜率和截距)
6. 直線在兩坐標軸上的截距相等,直線方程可以理解為,但不要忘記當時,直線在兩坐標軸上的截距都是0,亦為截距相等。
7.解決線性規(guī)劃問題的基本步驟是什么?請你注意解題格式和完整的文字表達。(①設出變量,寫出目標函數②寫出線性約束條件③畫出可行域④作出目標函數對應的系列平行線,找到并求出最優(yōu)解⑦應用題一定要有答。)
8.三種圓錐曲線的定義、圖形、標準方程、幾何性質,橢圓與雙曲線中的兩個特征三角形你掌握了嗎?
9.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問題?
10.利用圓錐曲線第二定義解題時,你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應用焦半徑公式?
11. 通徑是拋物線的所有焦點弦中最短的弦。(想一想在雙曲線中的結論?)
12. 在用圓錐曲線與直線聯立求解時,消元后得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線二次項系數為零時直線與其只有一個交點,判別式的限制。(求交點,弦長,中點,斜率,對稱,存在性問題都在下進行).
13.解析幾何問題的求解中,平面幾何知識利用了嗎?題目中是否已經有坐標系了,是否需要建立直角坐標系?
七、立體幾何
1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
2.線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什么?
3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見
4.線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行”而導致證明過程跨步太大。
5.求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。
6.異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。
7.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?
8. 兩條異面直線所成的角的范圍:0°<α≤90°< p="">
直線與平面所成的角的范圍:0o≤α≤90°
高考數學重要知識點
圓與圓的位置關系的判斷方法
一、設兩個圓的半徑為R和r,圓心距為d。
則有以下五種關系:
1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。
2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。
3、d=R—r兩圓內切;兩圓的圓心距離之和等于兩圓的半徑之差。
4、d<r—rp=""兩圓內含;兩圓的圓心距離之和小于兩圓的半徑之差。< p="">
5、d<r+rp=""兩園相交;兩圓的圓心距離之和小于兩圓的半徑之和。< p="">
二、圓和圓的位置關系,還可用有無公共點來判斷:
1、無公共點,一圓在另一圓之外叫外離,在之內叫內含。
2、有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切。
3、有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。