高二數(shù)學(xué)教案必修四
數(shù)學(xué)教案怎么寫?要注重對學(xué)生的價值觀、科學(xué)態(tài)度、學(xué)習(xí)方法及能力的培養(yǎng)。構(gòu)建培養(yǎng)學(xué)生全方位的素質(zhì)能力的課堂教學(xué)模式。今天小編在這給大家整理了高二數(shù)學(xué)教案大全,接下來隨著小編一起來看看吧!
高二數(shù)學(xué)教案(一)
預(yù)習(xí)課本P103~105,思考并完成以下問題
(1)怎樣定義向量的數(shù)量積?向量的數(shù)量積與向量數(shù)乘相同嗎?
(2)向量b在a方向上的投影怎么計算?數(shù)量積的幾何意義是什么?
(3)向量數(shù)量積的性質(zhì)有哪些?
(4)向量數(shù)量積的運算律有哪些?
[新知初探]
1.向量的數(shù)量積的定義
(1)兩個非零向量的數(shù)量積:
已知條件向量a,b是非零向量,它們的夾角為θ
定義a與b的數(shù)量積(或內(nèi)積)是數(shù)量|a||b|cosθ
記法a·b=|a||b|cosθ
(2)零向量與任一向量的數(shù)量積:
規(guī)定:零向量與任一向量的數(shù)量積均為0.
[點睛](1)兩向量的數(shù)量積,其結(jié)果是數(shù)量,而不是向量,它的值等于兩向量的模與兩向量夾角余弦值的乘積,其符號由夾角的余弦值來決定.
(2)兩個向量的數(shù)量積記作a·b,千萬不能寫成a×b的形式.
2.向量的數(shù)量積的幾何意義
(1)投影的概念:
①向量b在a的方向上的投影為|b|cosθ.
②向量a在b的方向上的投影為|a|cosθ.
(2)數(shù)量積的幾何意義:
數(shù)量積a·b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積.
[點睛](1)b在a方向上的投影為|b|cosθ(θ是a與b的夾角),也可以寫成a·b|a|.
(2)投影是一個數(shù)量,不是向量,其值可為正,可為負(fù),也可為零.
3.向量數(shù)量積的性質(zhì)
設(shè)a與b都是非零向量,θ為a與b的夾角.
(1)a⊥b?a·b=0.
(2)當(dāng)a與b同向時,a·b=|a||b|,
當(dāng)a與b反向時,a·b=-|a||b|.
(3)a·a=|a|2或|a|=a·a=a2.
(4)cosθ=a·b|a||b|.
(5)|a·b|≤|a||b|.
[點睛]對于性質(zhì)(1),可以用來解決有關(guān)垂直的問題,即若要證明某兩個向量垂直,只需判定它們的數(shù)量積為0;若兩個非零向量的數(shù)量積為0,則它們互相垂直.
4.向量數(shù)量積的運算律
(1)a·b=b·a(交換律).
(2)(λa)·b=λ(a·b)=a·(λb)(結(jié)合律).
(3)(a+b)·c=a·c+b·c(分配律).
[點睛](1)向量的數(shù)量積不滿足消去律:若a,b,c均為非零向量,且a·c=b·c,但得不到a=b.
(2)(a·b)·c≠a·(b·c),因為a·b,b·c是數(shù)量積,是實數(shù),不是向量,所以(a·b)·c與向量c共線,a·(b·c)與向量a共線,因此,(a·b)·c=a·(b·c)在一般情況下不成立.
[小試身手]
1.判斷下列命題是否正確.(正確的打“√”,錯誤的打“×”)
(1)兩個向量的數(shù)量積仍然是向量.()
(2)若a·b=b·c,則一定有a=c.()
(3)若a,b反向,則a·b=-|a||b|.()
(4)若a·b=0,則a⊥b.()
答案:(1)×(2)×(3)√(4)×
2.若|a|=2,|b|=12,a與b的夾角為60°,則a·b=()
A.2B.12
C.1D.14
答案:B
3.已知|a|=10,|b|=12,且(3a)·15b=-36,則a與b的夾角為()
A.60°B.120°
C.135°D.150°
答案:B
4.已知a,b的夾角為θ,|a|=2,|b|=3.
(1)若θ=135°,則a·b=________;
(2)若a∥b,則a·b=________;
(3)若a⊥b,則a·b=________.
答案:(1)-32(2)6或-6(3)0
向量數(shù)量積的運算
[典例](1)已知向量a與b的夾角為120°,且|a|=4,|b|=2,求:①a·b;②(a+b)·
(a-2b).
(2)如圖,正三角形ABC的邊長為2,=c,=a,=b,求a·b+b·c+c·a.
[解](1)①由已知得a·b=|a||b|cosθ=4×2×cos120°=-4.
②(a+b)·(a-2b)=a2-a·b-2b2=16-(-4)-2×4=12.
(2)∵|a|=|b|=|c|=2,且a與b,b與c,c與a的夾角均為120°,
∴a·b+b·c+c·a=2×2×cos120°×3=-3.
向量數(shù)量積的求法
(1)求兩個向量的數(shù)量積,首先確定兩個向量的模及向量的夾角,其中準(zhǔn)確求出兩向量的夾角是求數(shù)量積的關(guān)鍵.
(2)根據(jù)數(shù)量積的運算律,向量的加、減與數(shù)量積的混合運算類似于多項式的乘法
運算.
[活學(xué)活用]
已知|a|=3,|b|=4,a與b的夾角為120°,求:
(1)a·b;(2)a2-b2;
(3)(2a-b)·(a+3b).
解:(1)a·b=|a||b|cos120°=3×4×-12=-6.
(2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2
=2|a|2+5|a||b|·cos120°-3|b|2
=2×32+5×3×4×-12-3×42=-60.
與向量的模有關(guān)的問題
[典例](1)(浙江高考)已知e1,e2是平面單位向量,且e1·e2=12.若平面向量b滿足b·e1=b·e2=1,則|b|=________.
(2)已知向量a,b的夾角為45°,且|a|=1,|2a-b|=10,則|b|=________.
[解析](1)令e1與e2的夾角為θ,
∴e1·e2=|e1|·|e2|cosθ=cosθ=12.
又0°≤θ≤180°,∴θ=60°.
∵b·(e1-e2)=0,
∴b與e1,e2的夾角均為30°,
∴b·e1=|b||e1|cos30°=1,
從而|b|=1cos30°=233.
(2)∵a,b的夾角為45°,|a|=1,
∴a·b=|a||b|cos45°=22|b|,
|2a-b|2=4-4×22|b|+|b|2=10,∴|b|=32.
[答案](1)233(2)32
求向量的模的常見思路及方法
(1)求模問題一般轉(zhuǎn)化為求模的平方,與向量數(shù)量積聯(lián)系,并靈活應(yīng)用a2=|a|2,勿忘記開方.
(2)a·a=a2=|a|2或|a|=a2,可以實現(xiàn)實數(shù)運算與向量運算的相互轉(zhuǎn)化.
[活學(xué)活用]
已知向量a,b滿足|a|=|b|=5,且a與b的夾角為60°,求|a+b|,|a-b|,|2a+b|.
解:∵|a+b|2=(a+b)2=(a+b)(a+b)
=|a|2+|b|2+2a·b=25+25+2|a||b|cos60°
=50+2×5×5×12=75,
∴|a+b|=53.
∵|a-b|2=(a-b)2=(a-b)(a-b)
=|a|2+|b|2-2a·b
=|a|2+|b|2-2|a||b|cos60°=25,
∴|a-b|=5.
∵|2a+b|2=(2a+b)(2a+b)
=4|a|2+|b|2+4a·b
=4|a|2+|b|2+4|a||b|cos60°=175,
∴|2a+b|=57.
兩個向量的夾角和垂直
題點一:求兩向量的夾角
1.(重慶高考)已知非零向量a,b滿足|b|=4|a|,且a⊥(2a+b),則a與b的夾角為()
A.π3B.π2
C.2π3D.5π6
解析:選C∵a⊥(2a+b),∴a·(2a+b)=0,
∴2|a|2+a·b=0,
即2|a|2+|a||b|cos〈a,b〉=0.
∵|b|=4|a|,∴2|a|2+4|a|2cos〈a,b〉=0,
∴cos〈a,b〉=-12,∴〈a,b〉=2π3.
題點二:證明兩向量垂直
2.已知向量a,b不共線,且|2a+b|=|a+2b|,求證:(a+b)⊥(a-b).
證明:∵|2a+b|=|a+2b|,
∴(2a+b)2=(a+2b)2.
即4a2+4a·b+b2=a2+4a·b+4b2,
∴a2=b2.
∴(a+b)·(a-b)=a2-b2=0.
又a與b不共線,a+b≠0,a-b≠0,
∴(a+b)⊥(a-b).
題點三:利用夾角和垂直求參數(shù)
3.已知a⊥b,|a|=2,|b|=3且向量3a+2b與ka-b互相垂直,則k的值為()
A.-32B.32
C.±32D.1
解析:選B∵3a+2b與ka-b互相垂直,
∴(3a+2b)·(ka-b)=0,
∴3ka2+(2k-3)a·b-2b2=0.
∵a⊥b,∴a·b=0,
又|a|=2,|b|=3,
∴12k-18=0,k=32.
求向量a與b夾角的思路
(1)求向量夾角的關(guān)鍵是計算a·b及|a||b|,在此基礎(chǔ)上結(jié)合數(shù)量積的定義或性質(zhì)計算cosθ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.
(2)在個別含有|a|,|b|與a·b的等量關(guān)系式中,常利用消元思想計算cosθ的值.
層級一學(xué)業(yè)水平達(dá)標(biāo)
1.已知向量a,b滿足|a|=1,|b|=4,且a·b=2,則a與b的夾角θ為()
A.π6B.π4
C.π3D.π2
解析:選C由題意,知a·b=|a||b|cosθ=4cosθ=2,又0≤θ≤π,所以θ=π3.
2.已知|b|=3,a在b方向上的投影為32,則a·b等于()
A.3B.92
C.2D.12
解析:選B設(shè)a與b的夾角為θ.∵|a|cosθ=32,
∴a·b=|a||b|cosθ=3×32=92.
3.已知|a|=|b|=1,a與b的夾角是90°,c=2a+3b,d=ka-4b,c與d垂直,則k的值為()
A.-6B.6
C.3D.-3
解析:選B∵c·d=0,
∴(2a+3b)·(ka-4b)=0,
∴2ka2-8a·b+3ka·b-12b2=0,
∴2k=12,∴k=6.
4.已知a,b滿足|a|=4,|b|=3,夾角為60°,則|a+b|=()
A.37B.13
C.37D.13
解析:選C|a+b|=?a+b?2=a2+2a·b+b2
=42+2×4×3cos60°+32=37.
5.在四邊形ABCD中,=,且·=0,則四邊形ABCD是()
A.矩形B.菱形
C.直角梯形D.等腰梯形
解析:選B∵=,即一組對邊平行且相等,·=0,即對角線互相垂直,∴四邊形ABCD為菱形.
6.給出以下命題:
①若a≠0,則對任一非零向量b都有a·b≠0;
②若a·b=0,則a與b中至少有一個為0;
③a與b是兩個單位向量,則a2=b2.
其中,正確命題的序號是________.
解析:上述三個命題中只有③正確,因為|a|=|b|=1,所以a2=|a|2=1,b2=|b|2=1,故a2=b2.當(dāng)非零向量a,b垂直時,有a·b=0,顯然①②錯誤.
答案:③
7.設(shè)e1,e2是兩個單位向量,它們的夾角為60°,則(2e1-e2)·(-3e1+2e2)=________.
解析:(2e1-e2)·(-3e1+2e2)=-6e21+7e1·e2-2e22=-6+7×cos60°-2=-92.
答案:-92
8.若|a|=1,|b|=2,c=a+b,且c⊥a,則向量a與b的夾角為________.
解析:∵c⊥a,∴c·a=0,
∴(a+b)·a=0,即a2+a·b=0.
∵|a|=1,|b|=2,∴1+2cos〈a,b〉=0,
∴cos〈a,b〉=-12.
又∵0°≤〈a,b〉≤180°,∴〈a,b〉=120°.
答案:120°
9.已知e1與e2是兩個夾角為60°的單位向量,a=2e1+e2,b=2e2-3e1,求a與b的
夾角.
解:因為|e1|=|e2|=1,
所以e1·e2=1×1×cos60°=12,
|a|2=(2e1+e2)2=4+1+4e1·e2=7,故|a|=7,
|b|2=(2e2-3e1)2=4+9-12e1·e2=7,故|b|=7,
且a·b=-6e21+2e22+e1·e2=-6+2+12=-72,
所以cos〈a,b〉=a·b|a|·|b|=-727×7=-12,
所以a與b的夾角為120°.
10.已知|a|=2|b|=2,且向量a在向量b方向上的投影為-1.
(1)求a與b的夾角θ;
(2)求(a-2b)·b;
(3)當(dāng)λ為何值時,向量λa+b與向量a-3b互相垂直?
解:(1)∵|a|=2|b|=2,
∴|a|=2,|b|=1.
又a在b方向上的投影為|a|cosθ=-1,
∴a·b=|a||b|cosθ=-1.
∴cosθ=-12,∴θ=2π3.
(2)(a-2b)·b=a·b-2b2=-1-2=-3.
(3)∵λa+b與a-3b互相垂直,
∴(λa+b)·(a-3b)=λa2-3λa·b+b·a-3b2
=4λ+3λ-1-3=7λ-4=0,∴λ=47.
層級二應(yīng)試能力達(dá)標(biāo)
1.已知|a|=2,|b|=1,且a與b的夾角為π3,則向量m=a-4b的模為()
A.2B.23
C.6D.12
解析:選B|m|2=|a-4b|2=a2-8a·b+16b2=4-8×2×1×12+16=12,所以|m|=23.
2.在Rt△ABC中,C=90°,AC=4,則·等于()
A.-16B.-8
C.8D.16
解析:選D法一:因為cosA=ACAB,故·=||·||cosA=||2=16,故選D.
法二:在上的投影為||cosA=||,故·=|cosA=||2=16,故選D.
3.已知向量a,b滿足|a|=1,|b|=2,且a在b方向上的投影與b在a方向上的投影相等,則|a-b|=()
A.1B.3
C.5D.3
解析:選C由于投影相等,故有|a|cos〈a,b〉=|b|cos〈a,b〉,因為|a|=1,|b|
=2,所以cos〈a,b〉=0,即a⊥b,則|a-b|=|a|2+|b|2-2a·b=5.
4.如圖,在邊長為2的菱形ABCD中,∠BAD=60°,E為BC的中點,則·=()
A.-3B.0
C.-1D.1
解析:選C·=AB―→+12AD―→·(-)
=12·-||2+12||2
=12×2×2×cos60°-22+12×22=-1.
5.設(shè)向量a,b,c滿足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,則|a|2+|b|2+|c|2的值是________.
解析:法一:由a+b+c=0得c=-a-b.
又(a-b)·c=0,∴(a-b)·(-a-b)=0,即a2=b2.
則c2=(a+b)2=a2+b2+2a·b=a2+b2=2,
∴|a|2+|b|2+|c|2=4.
法二:如圖,作==a,
=b,則=c.
∵a⊥b,∴AB⊥BC,
又∵a-b=-=,
(a-b)⊥c,∴CD⊥CA,
所以△ABC是等腰直角三角形,
∵|a|=1,∴|b|=1,|c|=2,∴|a|2+|b|2+|c|2=4.
答案:4
6.已知向量a,b的夾角為45°,且|a|=4,12a+b·(2a-3b)=12,則|b|=________;b在a方向上的投影等于________.
解析:12a+b·(2a-3b)=a2+12a·b-3b2=12,即3|b|2-2|b|-4=0,解得|b|=2(舍負(fù)),b在a方向上的投影是|b|cos45°=2×22=1.
答案:21
7.已知非零向量a,b,滿足|a|=1,(a-b)·(a+b)=12,且a·b=12.
(1)求向量a,b的夾角;(2)求|a-b|.
解:(1)∵(a-b)·(a+b)=12,
∴a2-b2=12,
即|a|2-|b|2=12.
又|a|=1,
∴|b|=22.
∵a·b=12,
∴|a|·|b|cosθ=12,
∴cosθ=22,
∴向量a,b的夾角為45°.
(2)∵|a-b|2=(a-b)2
=|a|2-2|a||b|cosθ+|b|2=12,
∴|a-b|=22.
8.設(shè)兩個向量e1,e2,滿足|e1|=2,|e2|=1,e1與e2的夾角為π3,若向量2te1+7e2與e1+te2的夾角為鈍角,求實數(shù)t的取值范圍.
解:由向量2te1+7e2與e1+te2的夾角為鈍角,
得?2te1+7e2?·?e1+te2?|2te1+7e2|·|e1+te2|<0.即
(2te1+7e2)·(e1+te2)<0,化簡即得
2t2+15t+7<0,解得-7
當(dāng)夾角為π時,也有(2te1+7e2)·(e1+te2)<0,
但此時夾角不是鈍角,
設(shè)2te1+7e2=λ(e1+te2),λ<0,可得
2t=λ,7=λt,λ<0,?λ=-14,t=-142.
∴所求實數(shù)t的取值范圍是
-7,-142∪-142,-12.
高二數(shù)學(xué)教案(二)
《平面向量的數(shù)量積》
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
1.掌握平面向量的數(shù)量積及其幾何意義;
2.掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3.了解用平面向量的數(shù)量積可以處理垂直的問題;
4.掌握向量垂直的條件.
教學(xué)重難點
教學(xué)重點:平面向量的數(shù)量積定義
教學(xué)難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)過程
1.平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).
并規(guī)定0向量與任何向量的數(shù)量積為0.
×探究:1、向量數(shù)量積是一個向量還是一個數(shù)量?它的符號什么時候為正?什么時候為負(fù)?
2、兩個向量的數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?
(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定.
(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學(xué)到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴(yán)格區(qū)分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.
(3)在實數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0.
教案【二】
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
1.掌握平面向量的數(shù)量積及其幾何意義;
2.掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3.了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題;
4.掌握向量垂直的條件.
教學(xué)重難點
教學(xué)重點:平面向量的數(shù)量積定義
教學(xué)難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)工具
投影儀
教學(xué)過程
一、復(fù)習(xí)引入:
1.向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數(shù)λ,使=λ
五,課堂小結(jié)
(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
六、課后作業(yè)
P107習(xí)題2.4A組2、7題
課后小結(jié)
(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
課后習(xí)題
作業(yè)
P107習(xí)題2.4A組2、7題
板書
略
高二數(shù)學(xué)教案(三)
《任意角和弧度制》
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
一、知識與技能
(1)理解并掌握弧度制的定義;(2)領(lǐng)會弧度制定義的合理性;(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進(jìn)行角度制與弧度制的換算;(5)角的集合與實數(shù)集之間建立的一一對應(yīng)關(guān)系.(6)使學(xué)生通過弧度制的學(xué)習(xí),理解并認(rèn)識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.
二、過程與方法
創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會定義的合理性.根據(jù)弧度制的定義推導(dǎo)并運用弧長公式和扇形面積公式.以具體的實例學(xué)習(xí)角度制與弧度制的互化,能正確使用計算器.
三、情態(tài)與價值
通過本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制---弧度制,理解并認(rèn)識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.角的概念推廣以后,在弧度制下,角的集合與實數(shù)集之間建立了一一對應(yīng)關(guān)系:即每一個角都有的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備
教學(xué)重難點
重點:理解并掌握弧度制定義;熟練地進(jìn)行角度制與弧度制地互化換算;弧度制的運用.
難點:理解弧度制定義,弧度制的運用.
教學(xué)工具
投影儀等
教學(xué)過程
一、創(chuàng)設(shè)情境,引入新課
師:有人問:??诘饺齺営卸噙h(yuǎn)時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)
顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制.他們的長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.
在角度的度量里面,也有類似的情況,一個是角度制,我們已經(jīng)不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制---弧度制.
二、講解新課
1.角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.
弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題.
2.弧度制的定義
長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).
(師生共同活動)探究:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點.請完成表格.
我們知道,角有正負(fù)零角之分,它的弧度數(shù)也應(yīng)該有正負(fù)零之分,如-π,-2π等等,一般地,正角的弧度數(shù)是一個正數(shù),負(fù)角的弧度數(shù)是一個負(fù)數(shù),零角的弧度數(shù)是0,角的正負(fù)主要由角的旋轉(zhuǎn)方向來決定.
角的概念推廣以后,在弧度制下,角的集合與實數(shù)集R之間建立了一一對應(yīng)關(guān)系:即每一個角都有的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng).
四、課堂小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。
五、作業(yè)布置
作業(yè):習(xí)題1.1A組第7,8,9題.
課后小結(jié)
度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。
課后習(xí)題
作業(yè):習(xí)題1.1A組第7,8,9題.
板書
高二數(shù)學(xué)教案必修四相關(guān)文章:
★ 高中數(shù)學(xué)必修四三角函數(shù)萬能公式歸納
★ 高中數(shù)學(xué)必修四第一章知識點總結(jié)
★ 2020高中數(shù)學(xué)教學(xué)教案3篇