高二數(shù)學(xué)復(fù)習(xí)知識點
學(xué)習(xí)這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目學(xué)習(xí)方法其實都是一樣的,不斷的記憶與練習(xí),使知識刻在腦海里。下面是小編給大家整理的一些高二數(shù)學(xué)的知識點,希望對大家有所幫助。
高二數(shù)學(xué)重點知識點總結(jié)
一、隨機事件
主要掌握好(三四五)
(1)事件的三種運算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。
(2)四種運算律:交換律、結(jié)合律、分配律、德莫根律。
(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨立。
二、概率定義
(1)統(tǒng)計定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;
(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;
(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
三、概率性質(zhì)與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個問題可以看成n重貝努力試驗(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式.
高二數(shù)學(xué)重要知識點整理
空間兩直線的位置關(guān)系:
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。
2、若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;
(2)沒有公共點——平行或異面
高二年級數(shù)學(xué)必修二知識點總結(jié)
基本概念
公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上的所有的點都在這個平面內(nèi)。
公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。
公理3:過不在同一條直線上的三個點,有且只有一個平面。
推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。
推論2:經(jīng)過兩條相交直線,有且只有一個平面。
推論3:經(jīng)過兩條平行直線,有且只有一個平面。
公理4:平行于同一條直線的兩條直線互相平行。
等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。
高二數(shù)學(xué)復(fù)習(xí)知識點相關(guān)文章:
★ 高二數(shù)學(xué)知識點復(fù)習(xí)總結(jié)
★ 高二數(shù)學(xué)必修復(fù)習(xí)知識點總結(jié)