特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦 > 學習方法 > 高中學習方法 > 高二學習方法 > 高二數(shù)學 >

高二數(shù)學必修三第三單元的知識點梳理

時間: 贊銳20 分享

不管學什么科目,課后復習自然是少不了的,復習是對我們以往所學知識的一個鞏固提高,特別是高中數(shù)學知識點比較復雜多樣化,更需要我們抽出大量的時間進行預習、復習,下面是小編給大家?guī)淼母叨?shù)學必修三第三單元的知識點梳理,希望大家能夠喜歡!

高二數(shù)學必修三第三單元的知識點梳理1

有界性

設函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界。

單調(diào)性

設函數(shù)f(x)的定義域為D,區(qū)間I包含于D。如果對于區(qū)間上任意兩點x1及x2,當x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。

奇偶性

設為一個實變量實值函數(shù),若有f(-x)=-f(x),則f(x)為奇函數(shù)。

幾何上,一個奇函數(shù)關(guān)于原點對稱,亦即其圖像在繞原點做180度旋轉(zhuǎn)后不會改變。

奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。

設f(x)為一實變量實值函數(shù),若有f(x)=f(-x),則f(x)為偶函數(shù)。

幾何上,一個偶函數(shù)關(guān)于y軸對稱,亦即其圖在對y軸映射后不會改變。

偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。

偶函數(shù)不可能是個雙射映射。

連續(xù)性

在數(shù)學中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的函數(shù)就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。

高二數(shù)學必修三第三單元的知識點梳理2

一、事件

1.在條件SS的必然事件.

2.在條件S下,一定不會發(fā)生的事件,叫做相對于條件S的不可能事件.

3.在條件SS的隨機事件.

二、概率和頻率

1.用概率度量隨機事件發(fā)生的可能性大小能為我們決策提供關(guān)鍵性依據(jù).

2.在相同條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA

nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.

3.對于給定的隨機事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).

三、事件的關(guān)系與運算

四、概率的幾個基本性質(zhì)

1.概率的取值范圍:

2.必然事件的概率P(E)=3.不可能事件的概率P(F)=

4.概率的加法公式:

如果事件A與事件B互斥,則P(AB)=P(A)+P(B).

5.對立事件的概率:

若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).

高二數(shù)學必修三第三單元的知識點梳理3

1、圓的定義

平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(1)標準方程,圓心,半徑為r;

(2)一般方程

當時,方程表示圓,此時圓心為,半徑為

當時,表示一個點;當時,方程不表示任何圖形。

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

3、直線與圓的位置關(guān)系

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有

(2)過圓外一點的切線:

①k不存在,驗證是否成立

②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系

通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

設圓

兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當時兩圓外離,此時有公切線四條;

當時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

當時,兩圓內(nèi)含;當時,為同心圓。

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點


高二數(shù)學必修三第三單元的知識點梳理相關(guān)文章:

高二數(shù)學必修三第三章知識點總結(jié)

高二數(shù)學必修三知識點總結(jié)

高二必修三數(shù)學知識點歸納

高中數(shù)學必修三重點知識點復習

高中數(shù)學必修三知識點歸納總結(jié)

高二數(shù)學必修三統(tǒng)計知識點整理

高中數(shù)學必修三知識點總結(jié)

高二數(shù)學必修4第三單元重要知識點

高中數(shù)學必修三公式匯總

高二數(shù)學必修三概率知識點歸納

1071316