高二數(shù)學(xué)課前預(yù)習(xí)的知識點(diǎn)分析
在高二的數(shù)學(xué)新知識中,對學(xué)生的思維要求和能力要求很高,高二的知識難度和計算量都比高一大很多,必須快速進(jìn)入高二的學(xué)習(xí),這樣后面的學(xué)習(xí)才能游刃有余!以下是小編給大家整理的高二數(shù)學(xué)課前預(yù)習(xí)的知識點(diǎn)分析,希望能幫助到你!
高二數(shù)學(xué)課前預(yù)習(xí)的知識點(diǎn)分析1
1.不等式證明的依據(jù)
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.
高二數(shù)學(xué)課前預(yù)習(xí)的知識點(diǎn)分析2
拋物線的性質(zhì):
1.拋物線是軸對稱圖形。對稱軸為直線
x=-b/2a。
對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點(diǎn)P,坐標(biāo)為
P(-b/2a,(4ac-b^2)/4a)
當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個數(shù)
Δ=b^2-4ac>0時,拋物線與x軸有2個交點(diǎn)。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點(diǎn)。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
焦半徑:
焦半徑:拋物線y2=2px(p>0)上一點(diǎn)P(x0,y0)到焦點(diǎn)Fè???÷?
p2,0的距離|PF|=x0+p2.
求拋物線方程的方法:
(1)定義法:根據(jù)條件確定動點(diǎn)滿足的幾何特征,從而確定p的值,得到拋物線的標(biāo)準(zhǔn)方程.
(2)待定系數(shù)法:根據(jù)條件設(shè)出標(biāo)準(zhǔn)方程,再確定參數(shù)p的值,這里要注意拋物線標(biāo)準(zhǔn)方程有四種形式.從簡單化角度出發(fā),焦點(diǎn)在x軸的,設(shè)為y2=ax(a≠0),焦點(diǎn)在y軸的,設(shè)為x2=by(b≠0).
高二數(shù)學(xué)課前預(yù)習(xí)的知識點(diǎn)分析3
1、圓的定義
平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。
2、圓的方程
(x-a)^2+(y-b)^2=r^2
(1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;
(2)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。
3、直線與圓的位置關(guān)系
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點(diǎn)的切線:①k不存在,驗證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
練習(xí)題:
2.若圓(x-a)2+(y-b)2=r2過原點(diǎn),則()
A.a2-b2=0B.a2+b2=r2
C.a2+b2+r2=0D.a=0,b=0
【解析】選B.因為圓過原點(diǎn),所以(0,0)滿足方程,
即(0-a)2+(0-b)2=r2,
所以a2+b2=r2.
高二數(shù)學(xué)課前預(yù)習(xí)的知識點(diǎn)分析相關(guān)文章:
★ 高中數(shù)學(xué)高效課前預(yù)習(xí)方法總結(jié)
★ 高二數(shù)學(xué)的學(xué)習(xí)特點(diǎn)和學(xué)習(xí)方法分析
★ 高二數(shù)學(xué)應(yīng)該怎么預(yù)習(xí)才好
★ 高中數(shù)學(xué)全部知識點(diǎn)提綱整理
★ 高中數(shù)學(xué)知識點(diǎn)全總結(jié)
★ 高二數(shù)學(xué)復(fù)習(xí)方法大全,數(shù)學(xué)總復(fù)習(xí)從高二就開始
★ 高二生學(xué)好數(shù)學(xué)的幾點(diǎn)訣竅,高二數(shù)學(xué)知識點(diǎn)總結(jié)