高二學年的數(shù)學知識點分析
在學習新知識的同時還要復習以前的舊知識,肯定會累,所以要注意勞逸結合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學習。以下是小編給大家整理的高二學年的數(shù)學知識點分析,希望能幫助到你!
高二學年的數(shù)學知識點分析1
1、圓的定義
平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標準方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點;當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。
3、直線與圓的位置關系
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有
(2)過圓外一點的切線:
①k不存在,驗證是否成立
②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關系
通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經(jīng)過切點,只有一條公切線;
當時,兩圓內含;當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
高二學年的數(shù)學知識點分析2
一、事件
1.在條件SS的必然事件.
2.在條件S下,一定不會發(fā)生的事件,叫做相對于條件S的不可能事件.
3.在條件SS的隨機事件.
二、概率和頻率
1.用概率度量隨機事件發(fā)生的可能性大小能為我們決策提供關鍵性依據(jù).
2.在相同條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA
nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.
3.對于給定的隨機事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).
三、事件的關系與運算
四、概率的幾個基本性質
1.概率的取值范圍:
2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
4.概率的加法公式:
如果事件A與事件B互斥,則P(AB)=P(A)+P(B).
5.對立事件的概率:
若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).
高二學年的數(shù)學知識點分析3
零向量與任何向量共線。非零向量共線條件是b=λa,其中a≠0,λ是實數(shù)。共線向量也就是平行向量,方向相同或相反的非零向量叫平行向量,任意一組平行向量都可移到同一直線上,所以稱為共線向量。
平面向量共線的條件
零向量與任何向量共線
以下考慮非零向量,三個方法
(1)方向相同或相反
(2)向量a=k向量b
(3)a=(x1,y1),b=(x2,y2)
a//b等價于x1y2-x2y1=0
共線向量基本定理
如果a≠0,那么向量b與a共線的充要條件是:存在實數(shù)λ,使得b=λa。
證明:
(1)充分性:對于向量a(a≠0)、b,如果有一個實數(shù)λ,使b=λa,那么由實數(shù)與向量的積的定義知,向量a與b共線。
(2)必要性:已知向量a與b共線,a≠0,且向量b的長度是向量a的長度的m倍,即∣b∣=m∣a∣。那么當向量a與b同方向時,令λ=m,有b=λa,當向量a與b反方向時,令λ=-m,有b=λa。如果b=0,那么λ=0。
(3)性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。
高二學年的數(shù)學知識點分析相關文章: