初一數(shù)學知識點歸納重點
從這個意義上,數(shù)學屬于形式科學,而不是自然科學。不同的數(shù)學家和哲學家對數(shù)學的確切范圍和定義有一系列的看法。下面小編為大家?guī)沓跻粩?shù)學知識點歸納重點,希望大家喜歡!
初一數(shù)學知識點歸納重點
1、三角形的分類
三角形按邊的關系分類如下:
三角形包括不等邊三角形和等腰三角形
等腰三角形 包括底和腰不相等的等腰三角形和等邊三角形
三角形按角的關系分類如下:
三角形包括 直角三角形(有一個角為直角的三角形)和斜三角形
斜三角形 包括 銳角三角形(三個角都是銳角的三角形)和 鈍角三角形(有一個角為鈍 角的三角形)
把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。
2、三角形的三邊關系定理及推論
(1)三角形三邊關系定理:三角形的兩邊之和大于第三邊。
推論:三角形的兩邊之差小于第三邊。
3、三角形的內(nèi)角和定理及推論
三角形的內(nèi)角和定理:三角形三個內(nèi)角和等于180°。
推論:
①直角三角形的兩個銳角互余。
②三角形的一個外角等于和它不相鄰的來兩個內(nèi)角的和。
③三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。
4、三角形的面積
三角形的面積=×底×高
全等三角形
1、全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。。
2、三角形全等的判定
三角形全等的判定定理:
(1)邊角邊定理:有兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成“邊角邊”或“SAS”)
(2)角邊角定理:有兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“角邊角”或“ASA”)
(3)邊邊邊定理:有三邊對應相等的兩個三角形全等(可簡寫成“邊邊邊”或“SSS”)。
直角三角形全等的判定:
對于特殊的直角三角形,判定它們?nèi)葧r,還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)
3、全等變換
只改變圖形的位置,不改變其形狀大小的圖形變換叫做全等變換。
全等變換包括一下三種:
(1)平移變換:把圖形沿某條直線平行移動的變換叫做平移變換。
(2)對稱變換:將圖形沿某直線翻折180°,這種變換叫做對稱變換。
(3)旋轉變換:將圖形繞某點旋轉一定的角度到另一個位置,這種變換叫做旋轉變換。
等腰三角形
1、等腰三角形的性質
(1)等腰三角形的性質定理及推論:
定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)
推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個角都相等,并且每個角都等于60°。
2、三角形中的中位線
連接三角形兩邊中點的線段叫做三角形的中位線。
(1)三角形共有三條中位線,并且它們又重新構成一個新的三角形。
(2)要會區(qū)別三角形中線與中位線。
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。
三角形中位線定理的作用:
位置關系:可以證明兩條直線平行。
數(shù)量關系:可以證明線段的倍分關系。
常用結論:任一個三角形都有三條中位線,由此有:
結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。
結論2:三條中位線將原三角形分割成四個全等的三角形。
結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。
結論4:三角形一條中線和與它相交的中位線互相平分。
結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。
初一數(shù)學知識點總結
一、一元一次不等式的解法:
一元一次不等式的解法與一元一次方程的解法類似,其步驟為:
1、去分母;
2、去括號;
3、移項;
4、合并同類項;
5、系數(shù)化為1
二、不等式的基本性質:
1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;
2、不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;
3、不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。
三、不等式的解:
能使不等式成立的未知數(shù)的值,叫做不等式的解。
四、不等式的解集:
一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
五、解不等式的依據(jù)不等式的基本性質:
性質1:不等式兩邊加上(或減去)同一個數(shù)(或式子),不等號的方向不變,
性質2:不等式兩邊乘以(或除以)同一個正數(shù),不等號的方向不變,
性質3:不等式兩邊乘以(或除以)同一個負數(shù),不等號的方向改變,
常見考法
(1)考查一元一次不等式的解法;
(2)考查不等式的性質。
誤區(qū)提醒
忽略不等號變向問題。
初中數(shù)學重點知識點歸納
有理數(shù)乘法的運算律
1、乘法的交換律:ab=ba;
2、乘法的結合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
單項式
只含有數(shù)字與字母的積的代數(shù)式叫做單項式。
注意:單項式是由系數(shù)、字母、字母的指數(shù)構成的。
多項式
1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。
2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。
提高數(shù)學思維的方法
轉化思維
轉化思維,既是一種方法,也是一種思維。轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。
創(chuàng)新思維是指以新穎獨創(chuàng)的方法解決問題的思維過程,通過這種思維能突破常規(guī)思維的界限,以超常規(guī)甚至反常規(guī)的方法、視角去思考問題,得出與眾不同的解
要培養(yǎng)質疑的習慣
在家庭教育中,家長要經(jīng)常引導孩子主動提問,學會質疑、反省,并逐步養(yǎng)成習慣。
在孩子放學回家后,讓孩子回顧當天所學的知識:老師如何講解的,同學是如何回答的?當孩子回答出來之后,接著追問:“為什么?”“你是怎樣想的?”啟發(fā)孩子講出思維的過程并盡量讓他自己作出評價。
有時,可以故意制造一些錯誤讓孩子去發(fā)現(xiàn)、評價、思考。通過這樣的訓練,孩子會在思維上逐步形成獨立見解,養(yǎng)成一種質疑的習慣。
初一數(shù)學知識點梳理
知識點、概念總結
1.不等式:用符號"<",">","≤","≥"表示大小關系的式子叫做不等式。
2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號">","<"連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)F(x)同解。
(2)如果不等式F(x)
(3)如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。
7.不等式的性質:
(1)如果x>y,那么yy;(對稱性)
(2)如果x>y,y>z;那么x>z;(傳遞性)
(3)如果x>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法則)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
(6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母(運用不等式性質2、3)
(2)去括號
(3)移項(運用不等式性質1)
(4)合并同類項
(5)將未知數(shù)的系數(shù)化為1(運用不等式性質2、3)
(6)有些時候需要在數(shù)軸上表示不等式的解集
10.一元一次不等式與一次函數(shù)的綜合運用:
一般先求出函數(shù)表達式,再化簡不等式求解。
11.一元一次不等式組:一般地,關于同一未知數(shù)的幾個一元一次不等式合在一起,就組成
了一個一元一次不等式組。
12.解一元一次不等式組的步驟:
(1)求出每個不等式的解集;
(2)求出每個不等式的解集的公共部分;(一般利用數(shù)軸)
(3)用代數(shù)符號語言來表示公共部分。(也可以說成是下結論)
13.解不等式的訣竅
(1)大于大于取大的(大大大);
例如:X>-1,X>2,不等式組的解集是X>2
(2)小于小于取小的(小小小);
例如:X<-4,X<-6,不等式組的解集是X<-6
(3)大于小于交叉取中間;
(4)無公共部分分開無解了;
14.解不等式組的口訣
(1)同大取大
例如,x>2,x>3,不等式組的解集是X>3
(2)同小取小
例如,x<2,x<3,不等式組的解集是X<2
(3)大小小大中間找
例如,x<2,x>1,不等式組的解集是1
(4)大大小小不用找
例如,x<2,x>3,不等式組無解
15.應用不等式組解決實際問題的步驟
(1)審清題意
(2)設未知數(shù),根據(jù)所設未知數(shù)列出不等式組
(3)解不等式組
(4)由不等式組的解確立實際問題的解
(5)作答
16.用不等式組解決實際問題:其公共解不一定就為實際問題的解,所以需結合生活實際具體分析,最后確定結果。
初一數(shù)學知識點歸納重點相關文章: