2022高中三角函數(shù)知識(shí)點(diǎn)
2021高中三角函數(shù)知識(shí)點(diǎn)有哪些你知道嗎?我們?cè)趯W(xué)習(xí)數(shù)學(xué)的過(guò)程中能鍛煉自己觀察事物的能力,分析判斷力及創(chuàng)新能力,在以后的生活中,這些能力可以幫助我們把人生道路走得更好,使我們終生受益。一起來(lái)看看2021高中三角函數(shù)知識(shí)點(diǎn),歡迎查閱!
高中三角函數(shù)知識(shí)點(diǎn)
角的概念的'推廣.弧度制.
任意角的三角函數(shù).單位圓中的三角函線.同角三角函數(shù)的基本關(guān)系式.正弦、余弦的誘導(dǎo)公式.
兩角和與差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
正弦函數(shù)、余弦函數(shù)的圖像和性質(zhì).周期函數(shù).函數(shù)y=Asin(ωx+φ)的圖像.正切函數(shù)的圖像和性質(zhì).已知三角函數(shù)值求角.
正弦定理.余弦定理.斜三角形解法.
考試要求
(1)理解任意角的概念、弧度的意義能正確地進(jìn)行弧度與角度的換算.
(2)掌握任意角的正弦、余弦、正切的定義;了解余切、正割、余割的定義;掌握同角三角函數(shù)的基本關(guān)系式;掌握正弦、余弦的誘導(dǎo)公式;了解周期函數(shù)與最小正周期的意義.
(3)掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正確運(yùn)用三角公式,進(jìn)行簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)、求值和恒等式證明.
(5)理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像和性質(zhì),會(huì)用“五點(diǎn)法”畫(huà)正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+φ)的簡(jiǎn)圖,理解A.ω、φ的物理意義.
(6)會(huì)由已知三角函數(shù)值求角,并會(huì)用符號(hào)arcsinxarc-cosxarctanx表示.
(7)掌握正弦定理、余弦定理,并能初步運(yùn)用它們解斜三角形.
(8)“同角三角函數(shù)基本關(guān)系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα?cotα=1”.
高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)
一、銳角三角函數(shù)公式
sin=的對(duì)邊/斜邊
cos=的鄰邊/斜邊
tan=的對(duì)邊/的鄰邊
cot=的鄰邊/的對(duì)邊
二、倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1
tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))
三、三倍角公式
sin3=4sinsin(/3+)sin(/3-)
cos3=4coscos(/3+)cos(/3-)
tan3a=tanatan(/3+a)tan(/3-a)
三倍角公式推導(dǎo)
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
輔助角公式
Asin+Bcos=(A2+B2)(1/2)sin(+t),其中
sint=B/(A2+B2)(1/2)
cost=A/(A2+B2)(1/2)
tant=B/A
Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B
四、降冪公式
sin2()=(1-cos(2))/2=versin(2)/2
cos2()=(1+cos(2))/2=covers(2)/2
tan2()=(1-cos(2))/(1+cos(2))
推導(dǎo)公式
tan+cot=2/sin2
tan-cot=-2cot2
1+cos2=2cos2
1-cos2=2sin2
1+sin=(sin/2+cos/2)2
=2sina(1-sina)+(1-2sina)sina
=3sina-4sina
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cosa-1)cosa-2(1-sina)cosa
=4cosa-3cosa
sin3a=3sina-4sina
=4sina(3/4-sina)
=4sina[(3/2)-sina]
=4sina(sin60-sina)
=4sina(sin60+sina)(sin60-sina)
=4sina_2sin[(60+a)/2]cos[(60-a)/2]_2sin[(60-a)/2]cos[(60-a)/2]
=4sinasin(60+a)sin(60-a)
cos3a=4cosa-3cosa
=4cosa(cosa-3/4)
=4cosa[cosa-(3/2)]
=4cosa(cosa-cos30)
=4cosa(cosa+cos30)(cosa-cos30)
=4cosa_2cos[(a+30)/2]cos[(a-30)/2]_{-2sin[(a+30)/2]sin[(a-
30)/2]}
=-4cosasin(a+30)sin(a-30)
=-4cosasin[90-(60-a)]sin[-90+(60+a)]
=-4cosacos(60-a)[-cos(60+a)]
=4cosacos(60-a)cos(60+a)
上述兩式相比可得
tan3a=tanatan(60-a)tan(60+a)
五、半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin2(a/2)=(1-cos(a))/2
cos2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
六、三角和
sin(++)=sincoscos+cossincos+coscossin
-sinsinsin
cos(++)=coscoscos-cossinsin-sincossin-sinsincos
tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)
七、兩角和差
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
sin()=sincoscossin
tan(+)=(tan+tan)/(1-tantan)
tan(-)=(tan-tan)/(1+tantan)
八、和差化積
sin+sin=2sin[(+)/2]cos[(-)/2]
sin-sin=2cos[(+)/2]sin[(-)/2]
cos+cos=2cos[(+)/2]cos[(-)/2]
cos-cos=-2sin[(+)/2]sin[(-)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
九、積化和差
sinsin=[cos(-)-cos(+)]/2
coscos=[cos(+)+cos(-)]/2
sincos=[sin(+)+sin(-)]/2
cossin=[sin(+)-sin(-)]/2
十、誘導(dǎo)公式
sin(-)=-sin
cos(-)=cos
tan(—a)=-tan
sin(/2-)=cos
cos(/2-)=sin
sin(/2+)=cos
cos(/2+)=-sin
sin(-)=sin
cos(-)=-cos
sin(+)=-sin
cos(+)=-cos
tanA=sinA/cosA
tan(/2+)=-cot
tan(/2-)=cot
tan(-)=-tan
tan(+)=tan
誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限
十一、萬(wàn)能公式
sin=2tan(/2)/[1+tan(/2)]
cos=[1-tan(/2)]/1+tan(/2)]
tan=2tan(/2)/[1-tan(/2)]
十二、其它公式
(1)(sin)2+(cos)2=1
(2)1+(tan)2=(sec)2
(3)1+(cot)^2=(csc)^2
(4)對(duì)于任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC
證:
A+B=-C
tan(A+B)=tan(-C)
(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得證
同樣可以得證,當(dāng)x+y+z=n(nZ)時(shí),該關(guān)系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC
(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC
(9)sin+sin(+2/n)+sin(+2_2/n)+sin(+2_3/n)++sin[+2_(n-1)/n]=0
cos+cos(+2/n)+cos(+2_2/n)+cos(+2_3/n)++cos[+2_(n-1)/n]=0以及
sin2()+sin2(-2/3)+sin2(+2/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
學(xué)好函數(shù)的方法
一、學(xué)數(shù)學(xué)就像玩游戲,想玩好游戲,當(dāng)然先要熟悉游戲規(guī)則
而在數(shù)學(xué)當(dāng)中,游戲規(guī)則就是所謂的基本定義。想學(xué)好函數(shù),第一要牢固掌握基本定義及對(duì)應(yīng)的圖像特征,如定義域,值域,奇偶性,單調(diào)性,周期性,對(duì)稱(chēng)軸等。
很多同學(xué)都進(jìn)入一個(gè)學(xué)習(xí)函數(shù)的誤區(qū),認(rèn)為只要掌握好的做題方法就能學(xué)好數(shù)學(xué),其實(shí)應(yīng)該首先應(yīng)當(dāng)掌握最基本的定義,在此基礎(chǔ)上才能學(xué)好做題的方法,所有的做題方法要成立歸根結(jié)底都必須從基本定義出發(fā),最好掌握這些定義和性質(zhì)的代數(shù)表達(dá)以及圖像特征。
二、牢記幾種基本初等函數(shù)及其相關(guān)性質(zhì)、圖象、變換
中學(xué)就那么幾種基本初等函數(shù):一次函數(shù)(直線方程)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、正弦余弦函數(shù)、正切余切函數(shù),所有的函數(shù)題都是圍繞這些函數(shù)來(lái)出的,只是形式不同而已,最終都能靠基本知識(shí)解決。
還有三種函數(shù),盡管課本上沒(méi)有,但是在高考以及自主招生考試中都經(jīng)常出現(xiàn)的對(duì)勾函數(shù):y=ax+b/x,含有絕對(duì)值的函數(shù),三次函數(shù)。這些函數(shù)的定義域、值域、單調(diào)性、奇偶性等性質(zhì)和圖像等各方面的特征都要好好研究。
三、圖像是函數(shù)之魂!要想學(xué)好做好函數(shù)題,必須充分關(guān)注函數(shù)圖象問(wèn)題
翻閱歷年高考函數(shù)題,有一個(gè)算一個(gè),幾乎百分之八十的函數(shù)問(wèn)題都與圖像有關(guān)。這就要求同學(xué)們?cè)趯W(xué)習(xí)函數(shù)時(shí)多多關(guān)注函數(shù)的圖像,要會(huì)作圖、會(huì)看圖、會(huì)用圖!多多關(guān)注函數(shù)圖象的平移、放縮、翻轉(zhuǎn)、旋轉(zhuǎn)、復(fù)合與疊加等問(wèn)題。
2021高中三角函數(shù)知識(shí)點(diǎn)相關(guān)文章:
★ 2021年高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
★ 高考數(shù)學(xué)知識(shí)點(diǎn)2021
★ 高中數(shù)學(xué)必修一三角函數(shù)知識(shí)點(diǎn)總結(jié)
★ 2017高考數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)
★ 怎么樣學(xué)好高中數(shù)學(xué)三角函數(shù)
★ 高中數(shù)學(xué)必修四三角函數(shù)萬(wàn)能公式歸納
★ 高中必修4數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)歸納