滬科技版八年級上冊數(shù)學(xué)電子課本
滬科技版八年級上冊數(shù)學(xué)電子課本可打印
數(shù)學(xué),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科,那么關(guān)于八年級上冊數(shù)學(xué)電子課本怎么學(xué)習(xí)呢?以下是小編準備的一些滬科技版八年級上冊數(shù)學(xué)電子課本,僅供參考。
八年級上冊數(shù)學(xué)電子課本
查看完整版可微信搜索公眾號【5068教學(xué)資料】,關(guān)注后對話框回復(fù)【8】獲取八年級語文、八年級數(shù)學(xué)、八年級英語電子課本資源。
八年級數(shù)學(xué)上冊知識點
中線
1、等腰三角形底邊上的中線垂直底邊,平分頂角;
2、等腰三角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。
1、兩邊上中線相等的三角形是等腰三角形;
2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形
角平分線
1、等腰三角形頂角平分線垂直平分底邊;
2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端點的距離相等。
1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;
2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。
高線
1、等腰三角形底邊上的高平分頂角、平分底邊;
2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。
1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;
2、有兩條高相等的三角形是等腰三角形。
八年級上冊數(shù)學(xué)測試題
1.某校學(xué)生在希望工程獻愛心的活動中,省下零用錢為貧困山區(qū)失學(xué)兒童捐款.各班捐款數(shù)額如下(單位為元):99, 101,103,97,98,102,96, 104,95,105,則該校平均每班捐款為______元.
2.某小組的一次測驗成績統(tǒng)計如下:得100分的3人,90分的3人,80分的2人,65分的2人,60分的1人,54分的1人,計算本次測驗的小組平均成績是______分.
3.為了解某校初三年級學(xué)生的`視力情況,從中抽樣檢查了100人的視力,在這個問題中個體是______,樣本的容量是______.
4.為了考察某地區(qū)初中畢業(yè)生數(shù)學(xué)升學(xué)考試的情況,從中抽查了200名考生的成績,在這個問題中,總體是______,樣本容量是______.
5.若兩組數(shù)x1,x2,…,xn;y1,y2,…,yn,它們的平均數(shù)平均數(shù)是______.
6.為了了解10000個燈泡的使用壽命,從中抽取了20個進行試驗檢查,在這個問題中,總體是______,個體是______,樣本是______,樣本容量是______.
7.為了考察初中三年級共一萬名考生的數(shù)學(xué)升學(xué)成績,從中抽出了10袋試卷,每袋30份,那么樣本容量是______.
答案:1.100 3.每個學(xué)生的視力,1004.這個地區(qū)所有考生的成績,200
6.10000個燈泡的使用壽命,每個燈泡的使用壽命,20
7.300
八年級數(shù)學(xué)上冊教案
一、基本知識和需說明的問題:
(一)圓的有關(guān)性質(zhì),本節(jié)中最重要的定理有4個。
1、垂徑定理:
本定理和它的三個推論說明: 在(垂直于弦(不是直徑的弦);(2)平分弦;(3)平分弦所對的弧;(4)過圓心(是半徑或是直徑)這四個語句中,滿足兩個就可得到其它兩個的結(jié)論。如垂直于弦(不是直徑的弦)的直徑,平分弦且平分弦所對的兩條弧。條件是垂直于弦(不是直徑的弦)的直徑,結(jié)論是平分弦、平分弧。再如弦的垂直平分線,經(jīng)過圓心且平分弦所對的弧。條件是垂直弦,、分弦,結(jié)論是過圓心、平分弦。
應(yīng)用:在圓中,弦的一半、半徑、弦心距組成一個直角三角形,利用勾股定理解直角三角形的知識,可計算弦長、半徑、弦心距和弓形的高。
2、圓心角、弧、弦、弦心距四者之間的關(guān)系定理:
在同圓和等圓中, 圓心角、弧、弦、弦心距這四組量中有一組量相等,則其它各組量均相等。這個定理證弧相等、弦相等、圓心角相等、弦心距相等是經(jīng)常用的。
3、圓周角定理:
此定理在證題中不大用,但它的推論,即弧相等所對的圓周角相等;在同圓或等圓中,圓周角相等,弧相等。直徑所對的圓周角是直角,90°的圓周角所對的弦是直徑,都是很重要的。條件中若有直徑,通常添加輔助線形成直角。
4、圓內(nèi)接四邊形的性質(zhì)。
(二)直線和圓的位置關(guān)系。
1、性質(zhì):
圓的切線垂直于經(jīng)過切點的半徑。(有了切線,將切點與圓心連結(jié),則半徑與切線垂直,所以連結(jié)圓心和切點,這條輔助線是常用的。)
2、切線的判定有兩種方法。
①若直線與圓有公共點,連圓心和公共點成半徑,證明半徑與直線垂直即可。
②若直線和圓公共點不確定,過圓心做直線的垂線,證明它是半徑(利用定義證)。根據(jù)不同的條件,選擇不同的添加輔助線的方法是極重要的。
3、三角形的內(nèi)切圓:
內(nèi)心是內(nèi)切圓圓心,具有的性質(zhì)是:到三角形的三邊距離相等,還要注意說某點是三角形的內(nèi)心。連結(jié)三角形的頂點和內(nèi)心,即是角平分線。
4、切線長定理:自圓外一點引圓的切線,則切線和半徑、圓心到該點的連線組成直角三角形。
(三)圓和圓的位置關(guān)系。
1、記住5種位置關(guān)系的`圓心距d與兩圓半徑之間的相等或不等關(guān)系。會利用d與R,r之間的關(guān)系確定兩圓的位置關(guān)系,會利用d,R,r之間的關(guān)系確定兩圓的位置關(guān)系。
2、相交兩圓,添加公共弦,通過公共弦將兩圓連結(jié)起來。
(四)正多邊形和圓。
1、弧長公式。
2、扇形面積公式。
3、圓錐側(cè)面積計算公式:S= 2π=π。
二、鞏固練習(xí)。
(一)精心選一選,相信自己的判斷!
1、如圖,把自行車的兩個車輪看成同一平面內(nèi)的兩個圓,則它們的位置關(guān)系是
A、外離 B、外切 C、相交 D、內(nèi)切
2、已知⊙O的直徑為12cm,圓心到直線L的距離為6cm,則直線L與⊙O的公共點的個數(shù)為( )
A、2 B、1 C、0 D、不確定
3、已知⊙O1與⊙O2的半徑分別為3cm和7cm,兩圓的圓心距O1O2 =10cm,則兩圓的位置關(guān)系是( )
A、外切 B、內(nèi)切 C、相交 D、相離
4、已知在⊙O中,弦AB的長為8厘米,圓心O到AB的距離為3厘米,則⊙O的半徑是( )
A、3厘米 B、4厘米 C、5厘米 D、8厘米
5、下列命題錯誤的是( )
A、經(jīng)過三個點一定可以作圓 B、三角形的外心到三角形各頂點的距離相等
C、同圓或等圓中,相等的圓心角所對的弧相等 D、經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
6、在平面直角坐標(biāo)系中,以點(2,3)為圓心,2為半徑的圓必定( )
A、與x軸相離、與y軸相切 B、與x軸、y軸都相離
C、與x軸相切、與y軸相離 D、與x軸、y軸都相切
7、在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞邊AC所在直線旋轉(zhuǎn)一周得到圓錐,則該圓錐的側(cè)面積是( )
A、25π B、65π C、90π D、130π
(二)細心填一填,試自己的身手!
12、各邊相等的圓內(nèi)接多邊形_____正多邊形;各角相等的圓內(nèi)接多邊形_____正多邊形。(填“是”或“不是”)
13、△ABC的內(nèi)切圓半徑為r,△ABC的周長為l,則△ABC的面積為_______________ 。
14、已知在⊙O中,半徑r=13,弦AB∥CD,且AB=24,CD=10,則AB與CD的距離為__________。
15、同圓的內(nèi)接正四邊形和內(nèi)接正方邊形的連長比為____________________。