八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納免費(fèi)
學(xué)習(xí)八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)的來(lái)源于勤奮好學(xué),只有好學(xué)者,才能在無(wú)邊的知識(shí)海洋里獵取到真智才學(xué),以下是小編準(zhǔn)備的一些八年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納免費(fèi),僅供參考。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)1
1、在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
(1)多邊形的一些要素:
邊:組成多邊形的各條線段叫做多邊形的邊。
頂點(diǎn):每相鄰兩條邊的公共端點(diǎn)叫做多邊形的頂點(diǎn)。
內(nèi)角:多邊形相鄰兩邊組成的角叫多邊形的內(nèi)角,一個(gè)n邊形有n個(gè)內(nèi)角。
外角:多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
(2)在定義中應(yīng)注意:
①一些線段(多邊形的邊數(shù)是大于等于3的正整數(shù));
②首尾順次相連,二者缺一不可;
③理解時(shí)要特別注意“在同一平面內(nèi)”這個(gè)條件,其目的是為了排除幾個(gè)點(diǎn)不共面的情況,即空間
2、多邊形的分類:
(1)多邊形可分為凸多邊形和凹多邊形,畫(huà)出多邊形的任何一條邊所在的直線,如果整個(gè)多邊形都在這條直線的同一側(cè),則此多邊形為凸多邊形,反之為凹多邊形(見(jiàn)圖1)。本章所講的多邊形都是指凸多邊形。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)2
平方根、算數(shù)平方根和立方根
1、算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。
表示方法:讀作根號(hào)a。
性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個(gè),零的算術(shù)平方根是零。
2、平方根:一般地,如果一個(gè)數(shù)x的平方等于a,即x2=a,那么這個(gè)數(shù)x就叫做a的平方根(或二次方根)。
表示方法:正數(shù)a的平方根,讀作“正、負(fù)根號(hào)a”。
性質(zhì):一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒(méi)有平方根。
開(kāi)平方:求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)3
1 過(guò)兩點(diǎn)有且只有一條直線
2 兩點(diǎn)之間線段最短
3 同角或等角的補(bǔ)角相等
4 同角或等角的余角相等
5 過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯(cuò)角相等,兩直線平行
11 同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯(cuò)角相等
14 兩直線平行,同旁內(nèi)角互補(bǔ)
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°
18 推論1 直角三角形的兩個(gè)銳角互余
19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25 邊邊邊公理 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35 推論1 三個(gè)角都相等的三角形是等邊三角形
36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42 定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44 定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45 逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46 勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形
48 定理 四邊形的內(nèi)角和等于360°
49 四邊形的外角和等于360°
550 多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51 推論 任意多邊的外角和等于360°
52 平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等
53 平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等
54 推論 夾在兩條平行線間的平行線段相等
55 平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分
56 平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形
57 平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形
58 平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)4
一.知識(shí)框架
二.知識(shí)概念
1.一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+bk≠0的形式,則稱y是x的一次函數(shù)x為自變量,y為因變量。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。
2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過(guò)原點(diǎn)0,0的一條直線。
3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過(guò)第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
4.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法
一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開(kāi)始,也是今后學(xué)習(xí)其它函數(shù)知識(shí)的基石。在學(xué)習(xí)本章內(nèi)容時(shí),教師應(yīng)該多從實(shí)際問(wèn)題出發(fā),引出變量,從具體到抽象的認(rèn)識(shí)事物。培養(yǎng)學(xué)生良好的變化與對(duì)應(yīng)意識(shí),體會(huì)數(shù)形結(jié)合的思想。在教學(xué)過(guò)程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問(wèn)題的同時(shí),讓學(xué)習(xí)體會(huì)到數(shù)學(xué)的實(shí)用價(jià)值和樂(lè)趣。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)5
一、勾股定理:
1.勾股定理內(nèi)容:如果直角三角形的兩直角邊長(zhǎng)分別為a,斜邊長(zhǎng)為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
2.勾股定理的證明:
勾股定理的證明方法很多,常見(jiàn)的是拼圖的方法
用拼圖的方法驗(yàn)證勾股定理的思路是:
(1)圖形進(jìn)過(guò)割補(bǔ)拼接后,只要沒(méi)有重疊,沒(méi)有空隙,面積不會(huì)改變;
(2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。
4.勾股定理的適用范圍:
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對(duì)于銳角三角形和鈍角三角形的三邊就不具有這一特征。
二、勾股定理的逆定理
1.逆定理的內(nèi)容:如果三角形三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形,其中c為斜邊。
說(shuō)明:(1)勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過(guò)“數(shù)轉(zhuǎn)化為形”來(lái)確定三角形的可能形狀,在運(yùn)用這一定理時(shí),可用兩小邊的平方和與較長(zhǎng)邊的平方作比較,若它們相等時(shí),以a,b,c為三邊的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng)a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時(shí)的斜邊是b.
2.利用勾股定理的逆定理判斷一個(gè)三角形是否為直角三角形的一般步驟:
(1)確定最大邊;
(2)算出最大邊的平方與另兩邊的平方和;
(3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說(shuō)明是直角三角形。
三、勾股數(shù)
能夠構(gòu)成直角三角形的三邊長(zhǎng)的三個(gè)正整數(shù)稱為勾股數(shù).
四、一個(gè)重要結(jié)論:
由直角三角形三邊為邊長(zhǎng)所構(gòu)成的三個(gè)正方形滿足“兩個(gè)較小面積和等于較大面積”。
五、勾股定理及其逆定理的應(yīng)用
解決圓柱側(cè)面兩點(diǎn)間的距離問(wèn)題、航海問(wèn)題,折疊問(wèn)題、梯子下滑問(wèn)題等,常直接間接運(yùn)用勾股定理及其逆定理的應(yīng)用。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)6
一.知識(shí)框架
二.知識(shí)概念
1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過(guò)平移、旋轉(zhuǎn)、對(duì)稱等運(yùn)動(dòng)(或稱變換)使之與另一個(gè)重合,這兩個(gè)三角形稱為全等三角形。
2.全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。
3.三角形全等的判定公理及推論有:
(1)“邊角邊”簡(jiǎn)稱“SAS”
(2)“角邊角”簡(jiǎn)稱“ASA”
(3)“邊邊邊”簡(jiǎn)稱“SSS”
(4)“角角邊”簡(jiǎn)稱“AAS”
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書(shū)寫(xiě)證明格式順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問(wèn)題.
在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過(guò)直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會(huì)到集合的真正魅力。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)7
1、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
2、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
3、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等
4、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
5、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
7、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
8、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
9、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
10、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)8
能夠完全重合的兩個(gè)三角形稱為全等三角形。(注:全等三角形是相似三角形中相似比為1:1的特殊情況)
當(dāng)兩個(gè)三角形完全重合時(shí),互相重合的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn),互相重合的邊叫做對(duì)應(yīng)邊,互相重合的角叫做對(duì)應(yīng)角。
由此,可以得出:全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。
(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;
(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角;
(3)有公共邊的,公共邊一定是對(duì)應(yīng)邊;
(4)有公共角的,角一定是對(duì)應(yīng)角;
(5)有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角;
表示:全等用“≌”表示,讀作“全等于”。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)9
一、知識(shí)概念
1、同底數(shù)冪的'乘法法則:m,n都是正數(shù)
2、冪的乘方法則:m,n都是正數(shù)
3、整式的乘法
(1)單項(xiàng)式乘法法則:?jiǎn)雾?xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。
(2)單項(xiàng)式與多項(xiàng)式相乘:?jiǎn)雾?xiàng)式乘以多項(xiàng)式,是通過(guò)乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
(3)多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
4、平方差公式:
5、完全平方公式:
6、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即a≠0,m、n都是正數(shù),且m>n、
在應(yīng)用時(shí)需要注意以下幾點(diǎn):
①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0、
②任何不等于0的數(shù)的0次冪等于1,即,如,―2、50=1,則00無(wú)意義、
③任何不等于0的數(shù)的―p次冪p是正整數(shù),等于這個(gè)數(shù)的p的次冪的倒數(shù),即a≠0,p是正整數(shù),而0―1,0―3都是無(wú)意義的;當(dāng)a>0時(shí),a―p的值一定是正的;當(dāng)a<0時(shí),a―p的值可能是正也可能是負(fù)的,如,
④運(yùn)算要注意運(yùn)算順序、
7、整式的除法
單項(xiàng)式除法單項(xiàng)式:?jiǎn)雾?xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;
多項(xiàng)式除以單項(xiàng)式:多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加、
8、分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式、
分解因式的一般方法:1、提公共因式法2、運(yùn)用公式法3、十字相乘法
分解因式的步驟:1先看各項(xiàng)有沒(méi)有公因式,若有,則先提取公因式;
2再看能否使用公式法;
3用分組分解法,即通過(guò)分組后提取各組公因式或運(yùn)用公式法來(lái)達(dá)到分解的目的;
4因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;
5因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止、
整式的乘除與分解因式這章內(nèi)容知識(shí)點(diǎn)較多,表面看來(lái)零碎的概念和性質(zhì)也較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時(shí),應(yīng)多準(zhǔn)備些小組合作與交流活動(dòng),培養(yǎng)學(xué)生推理能力、計(jì)算能力。在做題中體驗(yàn)數(shù)學(xué)法則、公式的簡(jiǎn)潔美、和諧美,提高做題效率。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)10
1.性質(zhì):
①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。
②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
2.分類:
①一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)11
如果我們知道了這兩個(gè)平方根的一個(gè),那么就可以及時(shí)的根據(jù)相反數(shù)的概念得到它的另一個(gè)平方根。
如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根。0的平方根是0。負(fù)數(shù)在實(shí)數(shù)范圍內(nèi)不能開(kāi)平方,只有在正數(shù)范圍內(nèi),才可以開(kāi)平方根。例如:-1的平方根為i,-9的平方根為3i。
平方根包含了算術(shù)平方根,算術(shù)平方根是平方根中的一種。
平方根和算術(shù)平方根都只有非負(fù)數(shù)才有。
被開(kāi)方數(shù)是乘方運(yùn)算里的冪。
求平方根可通過(guò)逆運(yùn)算平方來(lái)求。
開(kāi)平方:求一個(gè)非負(fù)數(shù)a的平方根的運(yùn)算叫做開(kāi)平方,其中a叫做被開(kāi)方數(shù)。
若x的平方等于a,那么x就叫做a的平方根,即√a=x
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)12
一.知識(shí)框架
二.知識(shí)概念
1.算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。
2.平方根:一般地,如果一個(gè)數(shù)x的.平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
3.正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒(méi)有平方根。
4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
5.數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0
實(shí)數(shù)部分主要要求學(xué)生了解無(wú)理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng),能估算無(wú)理數(shù)的大小;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會(huì)進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)13
我們稱數(shù)值變化的量為變量(variable)。
有些量的數(shù)值是始終不變的,我們稱它們?yōu)槌A?constant)。
在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們說(shuō)x是自變量(independentvariable),y是x的函數(shù)(function)。
如果當(dāng)x=a時(shí)y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。
形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportionalfunction),其中k叫做比例系數(shù)。
形如y=kx+b(k,b是常數(shù),k≠0)的函數(shù),叫做一次函數(shù)(linearfunction)。正比例函數(shù)是一種特殊的一次函數(shù)。
當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線。從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo)。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)14
一、在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做_軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;_軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被_軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:_軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。
3、點(diǎn)的坐標(biāo)的概念
對(duì)于平面內(nèi)任意一點(diǎn)P,過(guò)點(diǎn)P分別_軸、y軸向作垂線,垂足在上_軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。
4、不同位置的點(diǎn)的坐標(biāo)的特征
(1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(_,y)在第一象限:_;0,y;0
點(diǎn)P(_,y)在第二象限:_;0,y;0
點(diǎn)P(_,y)在第三象限:_;0,y;0
點(diǎn)P(_,y)在第四象限:_;0,y;0
(2)、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(_,y)在_軸上,y=0,_為任意實(shí)數(shù)
點(diǎn)P(_,y)在y軸上,_=0,y為任意實(shí)數(shù)
點(diǎn)P(_,y)既在_軸上,又在y軸上,_,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
(3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(_,y)在第一、三象限夾角平分線(直線y=_)上,_與y相等
點(diǎn)P(_,y)在第二、四象限夾角平分線上,_與y互為相反數(shù)
(4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征
位于平行于_軸的直線上的各點(diǎn)的縱坐標(biāo)相同。
位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
(5)、關(guān)于_軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p’關(guān)于_軸對(duì)稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(_,y)關(guān)于_軸的對(duì)稱點(diǎn)為P’(_,―y)
點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(_,y)關(guān)于y軸的對(duì)稱點(diǎn)為P’(―_,y)
點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(_,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(―_,―y)
(6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(_,y)到坐標(biāo)軸及原點(diǎn)的距離:
(1)點(diǎn)P(_,y)到_軸的距離等于|y|;
(2)點(diǎn)P(_,y)到y(tǒng)軸的距離等于|_|;
(3)點(diǎn)P(_,y)到原點(diǎn)的距離等于根號(hào)___+y_y
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)15
學(xué)好知識(shí)就需要平時(shí)的積累。知識(shí)積累越多,掌握越熟練,編輯了人教版初二上冊(cè)數(shù)學(xué)期中復(fù)習(xí)知識(shí)點(diǎn):立方根,歡迎參考!
立方根
讀作“三次根號(hào)a”其中,a叫做被開(kāi)方數(shù),3叫做根指數(shù)。(a等于所有數(shù),包括0)如果被開(kāi)方數(shù)還有指數(shù),那么這個(gè)指數(shù)(必須是三能約去的)還可以和三次根號(hào)約去。
求一個(gè)數(shù)a的立方根的運(yùn)算叫做開(kāi)立方。
立方根的性質(zhì):
⑴正數(shù)的立方根是正數(shù).⑵負(fù)數(shù)的立方根是負(fù)數(shù).⑶0的立方根是0.一般地,如果一個(gè)數(shù)X的立方等于a,那么這個(gè)數(shù)X就叫做a的立方根(cuberoot,也叫做三次方根)。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
立方和開(kāi)立方運(yùn)算,互為逆運(yùn)算。
互為相反數(shù)的兩個(gè)數(shù)的立方根也是互為相反數(shù)。
負(fù)數(shù)不能開(kāi)平方,但能開(kāi)立方。
立方根如何與其他數(shù)作比較?
⑴做這兩個(gè)數(shù)的立方
⑵作差
⑶比較被開(kāi)方數(shù)(如三次根號(hào)3大于三次根號(hào)2)
任何數(shù)(正數(shù)、負(fù)數(shù)、或零)的立方根如果存在的話,必定只有一個(gè).
平方根與立方根的區(qū)別與聯(lián)系
一、區(qū)別
⑴根指數(shù)不同:平方根的根指數(shù)為2,且可以省略不寫(xiě);立方根的根指數(shù)為3,且不能省略不寫(xiě)。
⑵被開(kāi)方的取值范圍不同:平方根中被開(kāi)方數(shù)必需為非負(fù)數(shù);立方根中被開(kāi)方數(shù)可以為任何數(shù)。
⑶結(jié)果不同:平方根的結(jié)果除0之外,有兩個(gè)互為相反的結(jié)果;立方根的結(jié)果只有一個(gè)。
二、連系
二者都是與乘方運(yùn)算互為逆運(yùn)算
八年級(jí)數(shù)學(xué)答題技巧
一、啟動(dòng)思維
考前要摒棄雜念,排除一切干擾,提前進(jìn)入數(shù)學(xué)思維狀態(tài)??记?0分鐘,首先看一看事先準(zhǔn)備好的客觀性題目常用解題方法和對(duì)應(yīng)的簡(jiǎn)單例子(每法一例,不要過(guò)多),其次,閉眼想一想平時(shí)考試自己易出現(xiàn)的錯(cuò)誤,然后動(dòng)手清點(diǎn)一下考場(chǎng)用具,輕松進(jìn)入考場(chǎng)。這樣做能增強(qiáng)信心,穩(wěn)定情緒,使自己提前進(jìn)入“角色”。
二、瀏覽全卷
拿到試卷后,不要急于求成,馬上作答,而要通覽一下全卷,摸透題情。一是看題量多少,有無(wú)印刷問(wèn)題;二是選出容易題,準(zhǔn)備先作答;三是把自己容易忽略和出錯(cuò)的事項(xiàng)在題的空白處做個(gè)記號(hào)。
三、仔細(xì)審題
考試時(shí)精力要集中,審題一定要細(xì)心。要放慢速度,逐字逐句搞清題意(似曾相識(shí)的題目更要注意異同),從多層面挖掘隱含條件及條件間內(nèi)在聯(lián)系,為快速解答提供可靠的信息和依據(jù)。否則,一味求快,丟三落四,不是思維受阻,就是前功盡棄。
四、由易到難
就是先做容易題,后做難題??荚囬_(kāi)始,順利解答幾個(gè)簡(jiǎn)單題目,可以產(chǎn)生“旗開(kāi)得勝”的快感,促使大腦興奮,有利于順利進(jìn)入最佳思維狀態(tài)??荚囍校茸鰞?nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。遇到難題,要敢于暫時(shí)“放棄”,不要浪費(fèi)太多時(shí)間(一般地,選擇或填空題每個(gè)不超過(guò)2分鐘),等把會(huì)做的題目解答完后,再回頭集中精力解決它。
五、分段得分
近幾年中考數(shù)學(xué)解答題有“入手容易,深入難”的特點(diǎn),第一問(wèn)較容易,第二、三問(wèn)難度逐漸加大。因此,解答時(shí)應(yīng)注意“分段得分”,步步為營(yíng)。首先拿下第一問(wèn),確保不失分,然后分析第一問(wèn)是否為第二、三問(wèn)準(zhǔn)備了思維基礎(chǔ)和解題條件,力爭(zhēng)第二問(wèn)保全分,爭(zhēng)取第三問(wèn)能搶到分。
六、跳躍解答
就是指當(dāng)不會(huì)解(或證)解答題中的前一問(wèn),而會(huì)解(或證)下一問(wèn)時(shí),可以直接利用前一問(wèn)的結(jié)論去解決下一問(wèn)。
七、退步分析
就是指當(dāng)用直接法解答或證明某一問(wèn)題遇到“卡子”時(shí),可以采用分析法。格式如下:假設(shè)“卡子”成立,則···(推出已知的條件和結(jié)論),以上步步可逆,所以 “卡子”成立。
八、正難則反
就是指當(dāng)用直接法解決某一問(wèn)題感到很困難時(shí),可以考慮反證法,找它的對(duì)立事件。
九、先改后劃
當(dāng)發(fā)現(xiàn)自己答錯(cuò)時(shí),不要急于劃掉重寫(xiě)。這是因?yàn)橹匦赂恼拇鸢缚赡芎蛣澋舻拇痤}無(wú)多大區(qū)別。其次,看著空白的答案紙重新思考很費(fèi)神。另外,劃掉后解答不對(duì)會(huì)得不償失。
十、聯(lián)想猜押
首先,當(dāng)遇到一時(shí)想不起的問(wèn)題時(shí),不要把注意力集中在一個(gè)目標(biāo),要換個(gè)角度思考,從與題目有關(guān)的知識(shí)開(kāi)始類比聯(lián)想。如“課本上怎么說(shuō)的?”,“筆記本上怎么記的?”,“老師怎么講的?”,“以前運(yùn)用這些知識(shí)解決過(guò)什么問(wèn)題?”,“是否能特殊化?”,“極限位置怎樣?”等等。
另外,考試時(shí)間快結(jié)束的時(shí)候,不要再嘗試新的問(wèn)題。如果選擇題還有不確定的,可以在先淘汰部分選擇支的情況下,根據(jù)四個(gè)選擇支在整卷中出現(xiàn)的概率進(jìn)行猜測(cè)。
十一、速書(shū)嚴(yán)查
卷面書(shū)寫(xiě)既要速度快,又要整潔、準(zhǔn)確,這樣既可以提高答題速度和質(zhì)量,又可以給閱卷的老師以好印象;草稿紙書(shū)寫(xiě)要有規(guī)劃,便于回頭檢查。檢查要嚴(yán)格認(rèn)真,要以懷疑的心態(tài)地查對(duì)每一道題的每一個(gè)步驟。
如“有沒(méi)有看錯(cuò)了問(wèn)題?”,“問(wèn)題中的已知條件運(yùn)用是否有誤?”,“是否遺漏了什么?算錯(cuò)了什么?”等等。值得注意的是,對(duì)于檢查時(shí)出現(xiàn)兩種答案不確定的情況時(shí),一般而言,“最先想起的才是正確答案”。
十二、調(diào)整心態(tài)
考前怯場(chǎng)或考試中某一環(huán)節(jié)暫時(shí)失利時(shí),不要驚慌,不要灰心喪氣,要沉著冷靜,進(jìn)行自我調(diào)節(jié)。一是自我暗示。如“自己難,別人也難”;“我不會(huì)做,別人也不一定會(huì)做”;“我要冷靜,要放松”等。
二是嘗試調(diào)試。如:做深呼吸3-4次;全身高度縮緊10秒鐘,然后突然放松;雙手舉至面部且自上而下干洗臉5-6次或伸展四肢和腰背,活動(dòng)手腕和頭頸。
初二數(shù)學(xué)學(xué)習(xí)方法:幾個(gè)重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見(jiàn)的等量關(guān)系就是“方程”。
所謂的“方程”思想就是對(duì)于數(shù)學(xué)問(wèn)題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
初中數(shù)學(xué)的兩個(gè)分支-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門(mén)用代數(shù)方法去研究幾何問(wèn)題的一門(mén)課,叫做“解析幾何”。
3、“對(duì)應(yīng)”的思想
“對(duì)應(yīng)”的思想由來(lái)已久,比如我們將一支鉛筆、一本書(shū)、一棟房子對(duì)應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對(duì)耳環(huán)、雙胞胎對(duì)應(yīng)一個(gè)抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對(duì)應(yīng)”擴(kuò)展到對(duì)應(yīng)一種形式,對(duì)應(yīng)一種關(guān)系,等等。