初二數(shù)學基礎知識點
偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創(chuàng)造出來。學習也是一樣的,需要積累,從少變多。下面是小編給大家整理的一些初二數(shù)學的知識點,希望對大家有所幫助。
八年級數(shù)學重要知識點
四邊形
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
平行四邊形的判定
1.兩組對邊分別相等的四邊形是平行四邊形
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個角是直角的平行四邊形。
矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
矩形判定定理:
1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
菱形的定義:鄰邊相等的平行四邊形。
菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
菱形的判定定理:
1.一組鄰邊相等的平行四邊形是菱形。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。S菱形=1/2×ab(a、b為兩條對角線)
正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:
1.鄰邊相等的矩形是正方形。
2.有一個角是直角的菱形是正方形。
梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個角是直角的梯形
等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點。平行四邊形的重心是它的兩條對角線的交點。三角形的三條中線交于疑點,這一點就是三角形的重心。寬和長的比是-1(約為0.618)的矩形叫做黃金矩形。
初二數(shù)學知識點
【統(tǒng)計的初步認識】
1、折線統(tǒng)計圖的特點:能獲取數(shù)據(jù)變化情況的信息,并進行簡單的預測。
2、折線統(tǒng)計圖的方法:在方格紙中,根據(jù)所給出的數(shù)據(jù)把點標出來,再用線將點連接起來,要順次連接。
3、能夠看出折線統(tǒng)計圖所提供的信息,并回答相關的問題。
補充內容:
1、條形統(tǒng)計圖與折線統(tǒng)計圖的不同:條形統(tǒng)計圖用直條表示數(shù)量的多少,折線統(tǒng)計圖用折線表示數(shù)量的增減變化情況。
2、初步了解復式折線統(tǒng)計圖,能夠從中獲得相應的信息,回答提出的問題。
課后練習
1.統(tǒng)計學的基本涵義是(D)。
A.統(tǒng)計資料
B.統(tǒng)計數(shù)字
C.統(tǒng)計活動
D.是一門處理數(shù)據(jù)的方法和技術的科學,也可以說統(tǒng)計學是一門研究“數(shù)據(jù)”的科學,任務是如何有效地收集、整理和分析這些數(shù)據(jù),探索數(shù)據(jù)內在的數(shù)量規(guī)律性,對所觀察的現(xiàn)象做出推斷或預測,直到為采取決策提供依據(jù)。
2.要了解某一地區(qū)國有工業(yè)企業(yè)的生產經營情況,則統(tǒng)計總體是(B)。
A.每一個國有工業(yè)企業(yè)
B.該地區(qū)的所有國有工業(yè)企業(yè)
C.該地區(qū)的所有國有工業(yè)企業(yè)的生產經營情況
D.每一個企業(yè)
3.要了解20個學生的學習情況,則總體單位是(C)。
A.20個學生
B.20個學生的學習情況
C.每一個學生
D.每一個學生的學習情況
4.下列各項中屬于數(shù)量標志的是(B)。
A.性別
B.年齡
C.職稱
D.健康狀況
5.總體和總體單位不是固定不變的,由于研究目的改變(A)。
A.總體單位有可能變換為總體,總體也有可能變換為總體單位
B.總體只能變換為總體單位,總體單位不能變換為總體
C.總體單位不能變換為總體,總體也不能變換為總體單位
D.任何一對總體和總體單位都可以互相變換
6.以下崗職工為總體,觀察下崗職工的性別構成,此時的標志是(C)。
A.男性職工人數(shù)
B.女性職工人數(shù)
C.下崗職工的性別
D.性別構成
初二數(shù)學學習方法
一該記的記,該背的背,不要以為理解了就行
有的同學認為,數(shù)學不像英語、史地,要背單詞、背年代、背地名,數(shù)學靠的是智慧、技巧和推理。我說你只講對了一半。數(shù)學同樣也離不開記憶。
因此,數(shù)學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鐘,如果背不出這三個公式,將會對今后的學習造成很大的麻煩,因為今后的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數(shù)學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數(shù)學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學的定義、法則、公式、定理就很難解數(shù)學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學題,甚至是解數(shù)學難題中得心應手。
1、“方程”的思想
數(shù)學是研究事物的空間形式和數(shù)量關系的,初中最重要的數(shù)量關系是等量關系,其次是不等量關系。最常見的等量關系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。
物理中的能量守恒,化學中的化學平衡式,現(xiàn)實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。
所謂的“方程”思想就是對于數(shù)學問題,特別是現(xiàn)實當中碰到的未知量和已知量的錯綜復雜的關系,善于用“方程”的觀點去構建有關的方程,進而用解方程的方法去解決它。